1
|
Gardner Z, Rahpeima S, Sun Q, Zou J, Darwish N, Vimalanathan K, Raston CL. High Shear Thin Film Synthesis of Partially Oxidized Gallium and Indium Composite 2D Sheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300577. [PMID: 37010011 DOI: 10.1002/smll.202300577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Reducing resistance in silicon-based devices is important as they get miniaturized further. 2D materials offer an opportunity to increase conductivity whilst reducing size. A scalable, environmentally benign method is developed for preparing partially oxidized gallium/indium sheets down to 10 nm thick from a eutectic melt of the two metals. Exfoliation of the planar/corrugated oxide skin of the melt is achieved using the vortex fluidic device with a variation in composition across the sheets determined using Auger spectroscopy. From an application perspective, the oxidized gallium indium sheets reduce the contact resistance between metals such as platinum and silicon (Si) as a semiconductor. Current‒voltage measurements between a platinum atomic force microscopy tip and a Si-H substrate show that the current switches from being a rectifier to a highly conducting ohmic contact. These characteristics offer new opportunities for controlling Si surface properties at the nanoscale and enable the integration of new materials with Si platforms.
Collapse
Affiliation(s)
- Zoe Gardner
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Soraya Rahpeima
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Qiang Sun
- School of Mechanical and Mining Engineering and Centre for Microscopy and Microanalysis, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jin Zou
- School of Mechanical and Mining Engineering and Centre for Microscopy and Microanalysis, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Kasturi Vimalanathan
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| |
Collapse
|
2
|
Li T, Ciampi S, Darwish N. The Surface Potential of Zero Charge Controls the Kinetics of Diazonium Salts Electropolymerization. ChemElectroChem 2022. [DOI: 10.1002/celc.202200255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tiexin Li
- School of Molecular and Life Sciences Curtin University Bentley WA 6102 Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences Curtin University Bentley WA 6102 Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences Curtin University Bentley WA 6102 Australia
| |
Collapse
|
3
|
Electro-polymerization rates of diazonium salts are dependent on the crystal orientation of the surface. J Colloid Interface Sci 2022; 626:985-994. [PMID: 35839679 DOI: 10.1016/j.jcis.2022.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 02/05/2023]
Abstract
Electro-polymerization of diazonium salts is widely used for modifying surfaces with thin organic films. Initially this method was primarily applied to carbon, then to metals, and more recently to semiconducting Si. Unlike on other surfaces, electrochemical reduction of diazonium salts on Si, which is one of the most industrially dominant material, is not well understood. Here, we report the electrochemical reduction of diazonium salts on a range of silicon electrodes of different crystal orientations (111, 211, 311, 411, and 100). We show that the kinetics of surface reaction and the reduction potential is Si crystal-facet dependent and is more favorable in the hierarchical order (111) > (211) > (311) > (411) > (100), a finding that offers control over the surface chemistry of diazonium salts on Si. The dependence of the surface reaction kinetics on the crystal orientation was found to be directly related to differences in the potential of zero charge (PZC) of each crystal orientation, which in turn controls the adsorption of the diazonium cations prior to reduction. Another consequence of the effect of PZC on the adsorption of diazonium cations, is that molecules terminated by distal diazonium moieties form a compact film in less time and requires less reduction potentials compared to that formed from diazonium molecules terminated by only one diazo moiety. In addition, at higher concentrations of diazonium cations, the mechanism of electrochemical polymerization on the surface becomes PZC-controlled adsorption-dominated inner-sphere electron transfer while at lower concentrations, diffusion-based outer-sphere electron transfer dominates. These findings help understanding the electro-polymerization reaction of diazonium salts on Si en route towards an integrated molecular and Si electronics technology.
Collapse
|
4
|
Electrochemical synthesis of catalytic materials for energy catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63940-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Li T, Peiris C, Dief EM, MacGregor M, Ciampi S, Darwish N. Effect of Electric Fields on Silicon-Based Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2986-2992. [PMID: 35220713 DOI: 10.1021/acs.langmuir.2c00015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electric fields can induce bond breaking and bond forming, catalyze chemical reactions on surfaces, and change the structure of self-assembled monolayers on electrode surfaces. Here, we study the effect of electric fields supplied either by an electrochemical potential or by conducting atomic force microscopy (C-AFM) on Si-based monolayers. We report that typical monolayers on silicon undergo partial desorption followed by the oxidation of the underneath silicon at +1.5 V vs Ag/AgCl. The monolayer loses 28% of its surface coverage and 55% of its electron transfer rate constant (ket) when +1.5 V electrochemical potential is applied on the Si surface for 10 min. Similarly, a bias voltage of +5 V applied by C-AFM induces complete desorption of the monolayer at specific sites accompanied by an average oxide growth of 2.6 nm when the duration of the bias applied is 8 min. Current-voltage plots progressively change from rectifying, typical of metal-semiconductor junctions, to insulating as the oxide grows. These results define the stability of Si-based organic monolayers toward electric fields and have implication in the design of silicon-based monolayers, molecular electronics devices, and on the interpretation of charge-transfer kinetics across them.
Collapse
Affiliation(s)
- Tiexin Li
- School of Molecular and Life Sciences, Curtin University, Bentley 6102, Western Australia, Australia
| | - Chandramalika Peiris
- School of Molecular and Life Sciences, Curtin University, Bentley 6102, Western Australia, Australia
| | - Essam M Dief
- School of Molecular and Life Sciences, Curtin University, Bentley 6102, Western Australia, Australia
| | - Melanie MacGregor
- Flinders Institute for Nanoscale Science & Technology, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley 6102, Western Australia, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley 6102, Western Australia, Australia
| |
Collapse
|
6
|
Zeng BF, Wei JY, Zhang XG, Liang QM, Hu S, Wang G, Lei ZC, Zhao SQ, Zhang HW, Shi J, Hong W, Tian ZQ, Yang Y. In situ lattice tuning of quasi-single-crystal surfaces for continuous electrochemical modulation. Chem Sci 2022; 13:7765-7772. [PMID: 35865890 PMCID: PMC9258404 DOI: 10.1039/d2sc01868c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
The ability to control the atomic-level structure of a solid represents a straightforward strategy for fabricating high-performance catalysts and semiconductor materials. Herein we explore the capability of the mechanically controllable surface strain method in adjusting the surface structure of a gold film. Underpotential deposition measurements provide a quantitative and ultrasensitive approach for monitoring the evolution of surface structures. The electrochemical activities of the quasi-single-crystalline gold films are enhanced productively by controlling the surface tension, resulting in a more positive potential for copper deposition. Our method provides an effective way to tune the atom arrangement of solid surfaces with sub-angstrom precision and to achieve a reduction in power consumption, which has vast applications in electrocatalysis, molecular electronics, and materials science. We reported a new method capable of adjusting the lattice structure of solid surfaces with sub-angstrom precision and achieved in situ and continuous control over electrochemical activity.![]()
Collapse
Affiliation(s)
- Biao-Feng Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Jun-Ying Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Xia-Guang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Qing-Man Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Shu Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Gan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Zhi-Chao Lei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Shi-Qiang Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - He-Wei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Lee AT, Tan CS, Huang MH. Current Rectification and Photo-Responsive Current Achieved through Interfacial Facet Control of Cu 2O-Si Wafer Heterojunctions. ACS CENTRAL SCIENCE 2021; 7:1929-1937. [PMID: 34841063 PMCID: PMC8614108 DOI: 10.1021/acscentsci.1c01067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Conductive atomic force microscopy (C-AFM) was employed to perform conductivity measurements on a facet-specific Cu2O cube, octahedron, and rhombic dodecahedron and intrinsic Si {100}, {111}, and {110} wafers. Similar I-V curves to those recorded previously using a nanomanipulator were obtained with the exception of high conductivity for the Si {110} wafer. Next, I-V curves of different Cu2O-Si heterostructures were evaluated. Among the nine possible arrangements, Cu2O octahedron/Si {100} wafer and Cu2O octahedron/Si {110} wafer combinations show good current rectification behaviors. Under white light illumination, Cu2O cube/Si {110} wafer and Cu2O rhombic dodecahedron/Si {111} wafer combinations exhibit the largest degrees of photocurrent, so such interfacial plane-controlled semiconductor heterojunctions with light sensitivity can be applied to make photodetectors. Adjusted band diagrams are presented highlighting different interfacial band bending situations to facilitate or inhibit current flow for different Cu2O-Si junctions. More importantly, the observation of clear current-rectifying effects produced at the semiconductor heterojunctions with properly selected contacting faces or planes implies that novel field-effect transistors (FETs) can be fabricated using this design strategy, which should integrate well with current chip manufacturing processes.
Collapse
Affiliation(s)
- An-Ting Lee
- Department
of Chemistry and Frontier Research Center on Fundamental and Applied
Sciences of Matters, National Tsing Hua
University, 101, Sec. 2, Kuang Fu Road, Hsinchu 30013, Taiwan
| | - Chih-Shan Tan
- Institute
of Electronics, National Yang Ming Chiao
Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Michael H. Huang
- Department
of Chemistry and Frontier Research Center on Fundamental and Applied
Sciences of Matters, National Tsing Hua
University, 101, Sec. 2, Kuang Fu Road, Hsinchu 30013, Taiwan
| |
Collapse
|
8
|
Florian J, Agarwal H, Singh N, Goldsmith BR. Why halides enhance heterogeneous metal ion charge transfer reactions. Chem Sci 2021; 12:12704-12710. [PMID: 34703556 PMCID: PMC8494035 DOI: 10.1039/d1sc03642d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022] Open
Abstract
The reaction kinetics of many metal redox couples on electrode surfaces are enhanced in the presence of halides (i.e., Cl-, Br-, I-). Using first-principles metadynamics simulations, we show a correlation between calculated desorption barriers of V3+-anion complexes bound to graphite via an inner-sphere anion bridge and experimental V2+/V3+ kinetic measurements on edge plane pyrolytic graphite in H2SO4, HCl, and HI. We extend this analysis to V2+/V3+, Cr2+/Cr3+, and Cd0/Cd2+ reactions on a mercury electrode and demonstrate that reported kinetics in acidic electrolytes for these redox couples also correlate with the predicted desorption barriers of metal-anion complexes. Therefore, the desorption barrier of the metal-anion surface intermediate is a descriptor of kinetics for many metal redox couple/electrode combinations in the presence of halides. Knowledge of the metal-anion surface intermediates can guide the design of electrolytes and electrocatalysts with faster kinetics for redox reactions of relevance to energy and environmental applications.
Collapse
Affiliation(s)
- Jacob Florian
- Department of Chemical Engineering, University of Michigan Ann Arbor Michigan 48109-2136 USA
- Catalysis Science and Technology Institute, University of Michigan Ann Arbor Michigan 48109-2136 USA
| | - Harsh Agarwal
- Department of Chemical Engineering, University of Michigan Ann Arbor Michigan 48109-2136 USA
- Catalysis Science and Technology Institute, University of Michigan Ann Arbor Michigan 48109-2136 USA
| | - Nirala Singh
- Department of Chemical Engineering, University of Michigan Ann Arbor Michigan 48109-2136 USA
- Catalysis Science and Technology Institute, University of Michigan Ann Arbor Michigan 48109-2136 USA
| | - Bryan R Goldsmith
- Department of Chemical Engineering, University of Michigan Ann Arbor Michigan 48109-2136 USA
- Catalysis Science and Technology Institute, University of Michigan Ann Arbor Michigan 48109-2136 USA
| |
Collapse
|
9
|
Abstract
Electrochemistry represents an important analytical technique used to acquire and assess chemical information in detail, which can aid fundamental investigations in various fields, such as biological studies. For example, electrochemistry can be used as simple and cost-effective means for bio-marker tracing in applications, such as health monitoring and food security screening. In combination with light, powerful spatially-resolved applications in both the investigation and manipulation of biochemical reactions begin to unfold. In this article, we focus primarily on light-addressable electrochemistry based on semiconductor materials and light-readable electrochemistry enabled by electrochemiluminescence (ECL). In addition, the emergence of multiplexed and imaging applications will also be introduced.
Collapse
|
10
|
A Facile Chemical Method Enabling Uniform Zn Deposition for Improved Aqueous Zn-Ion Batteries. NANOMATERIALS 2021; 11:nano11030764. [PMID: 33803524 PMCID: PMC8003029 DOI: 10.3390/nano11030764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Rechargeable aqueous Zn-ion batteries (ZIBs) have gained great attention due to their high safety and the natural abundance of Zn. Unfortunately, the Zn metal anode suffers from dendrite growth due to nonuniform deposition during the plating/stripping process, leading to a sudden failure of the batteries. Herein, Cu coated Zn (Cu-Zn) was prepared by a facile pretreatment method using CuSO4 aqueous solution. The Cu coating transformed into an alloy interfacial layer with a high affinity for Zn, which acted as a nucleation site to guide the uniform Zn nucleation and plating. As a result, Cu-Zn demonstrated a cycling life of up to 1600 h in the symmetric cells and endowed a stable cycling performance with a capacity of 207 mAh g-1 even after 1000 cycles in the full cells coupled with a V2O5-based cathode. This work provides a simple and effective strategy to enable uniform Zn deposition for improved ZIBs.
Collapse
|
11
|
Zhang S, Ferrie S, Peiris CR, Lyu X, Vogel YB, Darwish N, Ciampi S. Common Background Signals in Voltammograms of Crystalline Silicon Electrodes are Reversible Silica-Silicon Redox Chemistry at Highly Conductive Surface Sites. J Am Chem Soc 2021; 143:1267-1272. [PMID: 33373229 DOI: 10.1021/jacs.0c10713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The electrochemical reduction of bulk silica, due to its high electrical resistance, is of limited viability, namely, requiring temperatures in excess of 850 °C. By means of electrochemical and electrical measurements in atomic force microscopy, we demonstrate that at a buried interface, where silica has grown on highly conductive Si(110) crystal facets, the silica-silicon conversion becomes reversible at room temperature and accessible within a narrow potential window. We conclude that parasitic signals commonly observed in voltammograms of silicon electrodes originate from silica-silicon redox chemistry. While these findings do not remove the requirement of high temperature toward bulk silica electrochemical reduction, they redefine for silicon the potential window free from parasitic signals and, as such, significantly restrict the conditions where electroanalytical methods can be applied to the study of silicon surface reactivity.
Collapse
Affiliation(s)
- Song Zhang
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Stuart Ferrie
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Chandramalika R Peiris
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Xin Lyu
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Yan B Vogel
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
12
|
|
13
|
Yang M, Li PH, Chen SH, Xiao XY, Tang XH, Lin CH, Huang XJ, Liu WQ. Nanometal Oxides with Special Surface Physicochemical Properties to Promote Electrochemical Detection of Heavy Metal Ions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001035. [PMID: 32406188 DOI: 10.1002/smll.202001035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/26/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal ions (HMIs) are one of the major environmental pollution problems currently faced. To monitor and control HMIs, rapid and reliable detection is required. Electrochemical analysis is one of the promising methods for on-site detection and monitoring due to high sensitivity, short response time, etc. Recently, nanometal oxides with special surface physicochemical properties have been widely used as electrode modifiers to enhance sensitivity and selectivity for HMIs detection. In this work, recent advances in the electrochemical detection of HMIs using nanometal oxides, which are attributed to specific crystal facets and phases, surficial defects and vacancies, and oxidation state cycle, are comprehensively summarized and discussed in aspects of synthesis, characterization, electroanalysis application, and mechanism. Moreover, the challenges and opportunities for the development and application of nanometal oxides with functional surface physicochemical properties in electrochemical determination of HMIs are presented.
Collapse
Affiliation(s)
- Meng Yang
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Shi-Hua Chen
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Xiang-Yu Xiao
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Xiang-Hu Tang
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Chu-Hong Lin
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Wen-Qing Liu
- Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
14
|
Strain Analysis on Electrochemical Failures of Nanoscale Silicon Electrode Based on Three-Dimensional In Situ Measurement. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10020468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nanoscale silicon film electrodes in Li-ion battery undergo great deformations leading to electrochemical and mechanical failures during repeated charging-discharging cycles. In-situ experimental characterization of the stress/strain in those electrodes still faces big challenges due to remarkable complexity of stress/strain evolution while it is still hard to predict the association between the electrode cycle life and the measurable mechanical parameters. To quantificationally investigate the evolution of the mechanical parameters, we develop a new full field 3D measurement method combining digital image correlation with laser confocal profilometry and propose a strain criterion of the failure based on semi-quantitative analysis via mean strain gradient (MSG). The experimental protocol and results illustrate that the revolution of MSG correlates positively with battery capacity decay, which may inspire future studies in the field of film electrodes.
Collapse
|
15
|
Yang L, Ravi SK, Nandakumar DK, Alzakia FI, Lu W, Zhang Y, Yang J, Zhang Q, Zhang X, Tan SC. A Hybrid Artificial Photocatalysis System Splits Atmospheric Water for Simultaneous Dehumidification and Power Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902963. [PMID: 31650636 DOI: 10.1002/adma.201902963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/30/2019] [Indexed: 06/10/2023]
Abstract
A new approach for artificial photocatalysis of electrical generation directly from atmospheric water is reported. A hybrid system comprising a hydrogel incorporated with Cu2 O and BaTiO3 nanoparticles is developed, wherein the Cu2 O is designed to expose two different crystal planes, namely (100) and (111). These planes exhibit different surface potentials and form a polarization electric field of 2.3 kV cm-1 that acts on a ferroelectric dipole. With the help of this electric field, the dipole is redirected for aiding in positive and negative polarizations with (100) and (111) planes, then boosting water reduction and oxidation kinetics separately at (100) and (111) planes. Additonally, zinc-/cobalt-based superhygroscopic hydrogels serve as a water-capturing "hand" to harness humidity from the ambient environment. The integrated hydrogel-Cu2 O@BaTiO3 hybrid is used to dehumidify air, which can split 36.5 mg of water by employing only 150 mg hydrogel and simultaneously generate a photocurrent of 224.3 µA cm-2 under 10 mW cm-2 illumination.
Collapse
Affiliation(s)
- Lin Yang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering drive 1, Singapore, 117574, Singapore
| | - Sai Kishore Ravi
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering drive 1, Singapore, 117574, Singapore
| | - Dilip Krishna Nandakumar
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering drive 1, Singapore, 117574, Singapore
| | - Fuad Indra Alzakia
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering drive 1, Singapore, 117574, Singapore
| | - Wanheng Lu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Yaoxin Zhang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering drive 1, Singapore, 117574, Singapore
| | - Jiachen Yang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering drive 1, Singapore, 117574, Singapore
| | - Qian Zhang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering drive 1, Singapore, 117574, Singapore
| | - Xueping Zhang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering drive 1, Singapore, 117574, Singapore
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering drive 1, Singapore, 117574, Singapore
| |
Collapse
|
16
|
Vogel YB, Gooding JJ, Ciampi S. Light-addressable electrochemistry at semiconductor electrodes: redox imaging, mask-free lithography and spatially resolved chemical and biological sensing. Chem Soc Rev 2019; 48:3723-3739. [PMID: 31143897 DOI: 10.1039/c8cs00762d] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spatial confinement of electrochemical reactions at solid/liquid interfaces is a mature area of research, and a central theme from cell biology to analytical chemistry. Monitoring or manipulating the kinetics of a charge transfer reaction in 2D is generally achieved using scanning electrochemical microscopy or multielectrode arrays, techniques that rely on moving physical probes or on a network of electrical connections. This tutorial is introducing concepts and instruments to confine faradaic electrochemical reactions in 2D without resorting to the mechanical movement of a probe, and with the simple design of one semiconducting electrode, one electrical lead and a single-channel potentiostat. We provide a theoretical background of semiconductor electrochemistry, and describe the use of localised visible light stimuli on photoconductor/liquid and semiconductor/liquid interfaces to address electrical conductivity - hence chemical reactivity - only at one specific site defined by the experimentalist. This enables shifting of the tenet of one electrode/one wire towards one wire/many electrodes. We discuss the applications of this emerging platform in the context of surface chemistry patterning, redox imaging, chemical and biological sensing, generating chemical gradients, electrocatalysis, nanotechnology and cell biology.
Collapse
Affiliation(s)
- Yan B Vogel
- Department of Chemistry, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia.
| | - J Justin Gooding
- School of Chemistry, The Australian Centre for NanoMedicine and the Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Simone Ciampi
- Department of Chemistry, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia.
| |
Collapse
|
17
|
Michalak M, Roguska A, Nogala W, Opallo M. Patterning Cu nanostructures tailored for CO 2 reduction to electrooxidizable fuels and oxygen reduction in alkaline media. NANOSCALE ADVANCES 2019; 1:2645-2653. [PMID: 36132742 PMCID: PMC9416923 DOI: 10.1039/c9na00166b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/16/2019] [Indexed: 05/16/2023]
Abstract
Due to the limited availability of noble metal catalysts, such as platinum, palladium, or gold, their substitution by more abundant elements is highly advisable. Considerably challenging is the controlled and reproducible synthesis of stable non-noble metallic nanostructures with accessible active sites. Here, we report a method of preparation of bare (ligand-free) Cu nanostructures from polycrystalline metal in a controlled manner. This procedure relies on heterogeneous localized electrorefining of polycrystalline Cu on indium tin oxide (ITO) and glassy carbon as model supports using scanning electrochemical microscopy (SECM). The morphology of nanostructures and thus their catalytic properties are tunable by adjusting the electrorefining parameters, i.e., the electrodeposition voltage, the translation rate of the metal source and the composition of the supporting electrolyte. The activity of the obtained materials towards the carbon dioxide reduction reaction (CO2RR), oxygen reduction reaction (ORR) in alkaline media and hydrogen evolution reaction (HER), is studied by feedback mode SECM. Spiky Cu nanostructures obtained at a high concentration of chloride ions exhibit enhanced electrocatalytic activity. Nanostructures deposited under high cathodic overpotentials possess a high surface-to-volume ratio with a large number of catalytic sites active towards the reversible CO2RR and ORR. The CO2RR yields easily electrooxidizable compounds - formic acid and carbon monoxide. The HER seems to occur efficiently at the crystallographic facets of Cu nanostructures electrodeposited under mild polarization.
Collapse
Affiliation(s)
- Magdalena Michalak
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Agata Roguska
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Marcin Opallo
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
18
|
Wang Y, Fang L, Gong M, Deng Z. Chemically modified nanofoci unifying plasmonics and catalysis. Chem Sci 2019; 10:5929-5934. [PMID: 31360398 PMCID: PMC6582755 DOI: 10.1039/c9sc00403c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022] Open
Abstract
Chemical modifiability is achieved for self-assembled plasmonic nanogaps to enable charge transfer plasmon resonance and unified plasmonic and catalytic functions.
A plasmonic nanofocus, often in the form of a nanogap, is capable of concentrating light in a nanometric volume. The greatly enhanced electromagnetic field offers many opportunities in physics and chemistry. However, the lack of a method to fine-tune the chemical activities of the nanofocus has severely limited its application. Here we communicate an intriguing class of chemically modified nanofoci (CMNFs) that are able to address this challenge. Our results successfully demonstrate a possibility to functionalize the nanosized, mass-transport-restricted nanogap (nanofocus) of a dimeric gold nanoparticle assembly with homo-(Au) and heterogeneous (Ag, Pt, and Pd) materials. The as-produced structures with conductive Au and Ag junctions generate a novel form of charge transfer plasmon (CTP) with continuously tunable frequency covering the visible and near-infrared domains. In addition, the Ag materials can be displaced by catalytic Pt and Pd metals while still maintaining a tightly focused electromagnetic field. These hybrid structures with unified catalytic and plasmonic properties enable real-time, on-site probing of catalytic conversions at the nanofocus by plasmon-enhanced Raman scattering. The chemically/optically engineered CMNFs represent the simplest function-integrated nanodevices for plasmonics, sensing, and catalysis. Our work not only realizes chemical CTP reshaping, but also allows chemical functionalization into an intensified plasmonic near-field. The latter may enable unconventional chemical reactions driven by the catalytically functionalized, strongly boosted light field.
Collapse
Affiliation(s)
- Yueliang Wang
- CAS Key Laboratory of Soft Matter Chemistry , Hefei National Research Center for Physical Sciences at the Microscale , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| | - Lingling Fang
- CAS Key Laboratory of Soft Matter Chemistry , Hefei National Research Center for Physical Sciences at the Microscale , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| | - Ming Gong
- Engineering and Materials Science Experiment Center , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - Zhaoxiang Deng
- CAS Key Laboratory of Soft Matter Chemistry , Hefei National Research Center for Physical Sciences at the Microscale , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| |
Collapse
|