1
|
Lee S, Yu H, Han MG, Jung H, Jung HT, Kim SM, Jeong HS. Versatile and Fast Electrochemical Activation Method for Carbon Nanotube Fibers with Diverse Active Materials. SMALL METHODS 2025; 9:e2401478. [PMID: 39690746 DOI: 10.1002/smtd.202401478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/08/2024] [Indexed: 12/19/2024]
Abstract
In this study, the challenge of non-electrochemical activity in carbon nanotube fibers (CNTFs) is addressed by developing a modified chlorosulfonic acid (CSA) densification process specifically developed for directly spun CNTFs. This post-treatment method, well-known for enhancing the physical properties of CNTFs, utilizes the double diffusion phenomenon to efficiently integrate a diverse range of active materials, from conductive polymers like polyaniline (PANI) to metal oxides like nickel oxide (NiO), into the fibers. This universal and cost-effective approach not only simplifies the integration process but also significantly boosts both the electrochemical and physical properties of the fibers. For instance, the PANI@CNTF composite exhibited a remarkable 17-fold increase in specific capacitance and a two-fold increase in load value compared to its pristine counterparts. This method proves straightforward, efficient, and versatile, making it suitable for developing fiber-shaped electrodes that advance the capabilities of wearable energy storage systems.
Collapse
Affiliation(s)
- Sungju Lee
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, South Korea
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Hayoung Yu
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, South Korea
| | - Min Gook Han
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, South Korea
- Department of Environmental Engineering, Chungbuk National University, Chungae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, South Korea
| | - Hyewon Jung
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, South Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeon-ro, Mapo-gu, Seoul, 04107, South Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Seung Min Kim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, South Korea
| | - Hyeon Su Jeong
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, South Korea
| |
Collapse
|
2
|
Zheng W, Li M, Chen H, Xie F, Yang Z, Leng L, Yang J, Qu W, Li H. Synthesis of Selenized Metal-Organic Framework Hollow Cage under Ambient Condition for Clean Energy Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11993-12003. [PMID: 39962754 DOI: 10.1021/acsami.4c17913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The synthesis of structured metal organic framework (MOF)-derived selenide composites is a vibrantly emerging research area serving clean energy purposes. However, there is no way to convert MOFs into structured selenide composites under ambient conditions for unknown reasons. This work gave mechanistic insights into how the redox properties and release rate of selenium precursors influenced the structural inheritance behavior of MOFs during the selenization process, explaining why maintaining the morphology of MOFs during a room-temperature aqueous selenization process is a tricky task. A novel method of selenizing structured ZIF-67 into CoSex hollow cages with its cubic morphology maintained was developed. The target combination between Co and Se was the primary mechanism accounting for ZIF-67 selenization and its morphology inheritance. The selenized ZIF-67 was used in two typical clean energy areas, i.e., coal combustion detoxification and renewable energy storage. The performances of selenized ZIF-67 surpassed those of unstructured cobalt selenides and other benchmark materials used in these two areas. Following the mechanistic insights into the selenization process of ZIF-67, further work may develop more efficient methods to synthesize MOF-derived metal selenide composites under mild conditions, which is critical to extend the variety of MOF-derived materials and serve their cost-effective uses under practical scenarios.
Collapse
Affiliation(s)
- Wei Zheng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Minyu Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Hongmei Chen
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Fuyin Xie
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Zequn Yang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Jianping Yang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Wenqi Qu
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
3
|
Parveen N, Da'na E, Taha A. Sustainable fabrication of Fe 2O 3/C nanoparticles via Acacia niloticaextract for enhanced supercapacitor performance. NANOTECHNOLOGY 2025; 36:115704. [PMID: 39740250 DOI: 10.1088/1361-6528/ada44a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/31/2024] [Indexed: 01/02/2025]
Abstract
This research investigates the eco-friendly production of iron oxide nanoparticles and their combination with carbon to create the FeC-1 and FeC-2 NPs, using seedless pods ofAcacia nilotica. These pods, rich in tannins and flavonoids, serve as a natural reducing, stabilizing, and carbon source. The study details the synthesis of FeC NPs through a non-toxic, green method and examines the influence of varying concentrations ofA. niloticaextract (ANE) on the electrochemical characteristics of the resulting n FeC-1 and FeC-2 electrodes. Both FeC-1 and FeC-2 NPs were tested extensively using cyclic voltammetry and galvanostatic charge-discharge methods to evaluate their pseudocapacitive properties in a three-electrode setup. The FeC-2 electrodes showed much better performance, achieving a specific capacitance of 482.85 F g-1, compared to FeC-1's 155.71 F g-1. This enhanced capacity is attributed to an optimal content that notably boosts conductivity. Additionally, FeC-2 showed impressive cyclic stability, retaining approximately 80% capacity at a constant current density. These findings underscore the potential of using ANE for developing cost-effective and environmentally benign FeC-1 and FeC-2 NPs with promising applications in high-performance supercapacitors.
Collapse
Affiliation(s)
- Nazish Parveen
- Department of Chemistry, College of Science, King Faisal University, PO Box 380, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - Enshirah Da'na
- Faculty of Engineering Technology, Al-Balqa Applied University, PO Box 15008, Amman 11134, Jordan
| | - Amel Taha
- Department of Chemistry, College of Science, King Faisal University, PO Box 380, Hofuf, Al-Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, PO Box 11121, Khartoum, Sudan
| |
Collapse
|
4
|
Wang LY, Ma C, Yang JN, Wang KX, Chen JS. Organometallic Polymer Constructed by Active Fe-C 12N 8 Centers for Boosting Sodium-Ion Storage. Angew Chem Int Ed Engl 2025; 64:e202413452. [PMID: 39155243 DOI: 10.1002/anie.202413452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
Organic-metal coordination materials with rich structural diversity are considered as promising electrode materials for rechargeable sodium-ion batteries. However, the electrochemical performance can be constrained by the limited number of active sites and structural instability under the discharge/charge process. Herein, organometallic polymer microspheres (Fe-PDA-220) with a unique d-π conjugated structure was designed and successfully constructed through a simple synchronous polymerization and coordination reactions. Polymerization of phenylenediamine was initiated by Fe3+ and Fe2+ ions generated synchronously during the polymerization integrated with poly-aminoquinone chains to form Fe-C12N8 active centers. Used as electrode materials for sodium-ion batteries, the distinctive Fe-C bond significantly boosts the structural stability, and the π-d conjugation system could facilitate electron transfer. A high reversible capacity of 345 mAh g-1 was delivered at 0.1 A g-1 and a capacity of 106 mAh g-1 was maintained even after discharged/charged at 1.0 A g-1 for 5000 cycles, outperforming most reported coordination materials. Spectroscopic and electronic analyses revealed that a two-electron reaction occurred per active unit, accompanied by the reversible redox evolution of the C=N groups and Fe ions during the sodiation/desodiation. This work provides a promising and efficient strategy for boosting the electrochemical performance of organic electrode materials by the design of organometallic polymers.
Collapse
Affiliation(s)
- Liang-Yu Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chao Ma
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia-Ning Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai-Xue Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie-Sheng Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Zhou Z, Xie S, Cai H, Colli AN, Monnens W, Zhang Q, Guo W, Zhang W, Han N, Pan H, Zhang X, Pan H, Xue Z, Zhang X, Yao Y, Zhang J, Fransaer J. A synchronous-twisting method to realize radial scalability in fibrous energy storage devices. SCIENCE ADVANCES 2024; 10:eado7826. [PMID: 39028805 PMCID: PMC11259157 DOI: 10.1126/sciadv.ado7826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/18/2024] [Indexed: 07/21/2024]
Abstract
For wearable electronics, radial scalability is one of the key research areas for fibrous energy storage devices to be commercialized, but this field has been shelved for years due to the lack of effective methods and configuration arrangements. Here, the team presents a generalizable strategy to realize radial scalability by applying a synchronous-twisting method (STM) for synthesizing a coaxial-extensible configuration (CEC). As examples, aqueous fiber-shaped Zn-MnO2 batteries and MoS2-MnO2 supercapacitors with a diameter of ~500 μm and a length of 100 cm were made. Because of the radial scalability, uniform current distribution, and stable binding force in CEC, the devices not only have high energy densities (~316 Wh liter-1 for Zn-MnO2 batteries and ~107 Wh liter-1 for MoS2-MnO2 supercapacitors) but also maintain a stable operational state in textiles when external bending and tensile forces were applied. The fabricating method together with the radial scalability of the devices provides a reference for future fiber-shaped energy storage devices.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Department of Materials Engineering, KU Leuven Kasteelpark Arenberg 44, bus 2450, B-3001 Heverlee, Belgium
| | - Sijie Xie
- Department of Materials Engineering, KU Leuven Kasteelpark Arenberg 44, bus 2450, B-3001 Heverlee, Belgium
| | - Heng Cai
- Department of Materials Engineering, KU Leuven Kasteelpark Arenberg 44, bus 2450, B-3001 Heverlee, Belgium
| | - Alejandro N. Colli
- Department of Materials Engineering, KU Leuven Kasteelpark Arenberg 44, bus 2450, B-3001 Heverlee, Belgium
- Universidad Nacional del Litoral, CONICET, Programa de Electroquímica Aplicada e Ingeniería Electroquímica (PRELINE), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM Santa Fe, Argentina
| | - Wouter Monnens
- Department of Materials Engineering, KU Leuven Kasteelpark Arenberg 44, bus 2450, B-3001 Heverlee, Belgium
| | - Qichong Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Wei Guo
- Department of Materials Engineering, KU Leuven Kasteelpark Arenberg 44, bus 2450, B-3001 Heverlee, Belgium
| | - Wei Zhang
- Department of Materials Engineering, KU Leuven Kasteelpark Arenberg 44, bus 2450, B-3001 Heverlee, Belgium
| | - Ning Han
- Department of Materials Engineering, KU Leuven Kasteelpark Arenberg 44, bus 2450, B-3001 Heverlee, Belgium
| | - Hongwei Pan
- Department of Materials Engineering, KU Leuven Kasteelpark Arenberg 44, bus 2450, B-3001 Heverlee, Belgium
| | - Xueliang Zhang
- Department of Materials Engineering, KU Leuven Kasteelpark Arenberg 44, bus 2450, B-3001 Heverlee, Belgium
| | - Hui Pan
- Department of Materials Engineering, KU Leuven Kasteelpark Arenberg 44, bus 2450, B-3001 Heverlee, Belgium
| | - Zhenhong Xue
- Department of Materials Engineering, KU Leuven Kasteelpark Arenberg 44, bus 2450, B-3001 Heverlee, Belgium
| | - Xuan Zhang
- Department of Materials Engineering, KU Leuven Kasteelpark Arenberg 44, bus 2450, B-3001 Heverlee, Belgium
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yagang Yao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Jin Zhang
- College of Chemical and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jan Fransaer
- Department of Materials Engineering, KU Leuven Kasteelpark Arenberg 44, bus 2450, B-3001 Heverlee, Belgium
| |
Collapse
|
6
|
Zhang Y, Jin S, Liu R, Liu Z, Gong L, Zhang L, Zhao T, Yin W, Chen S, Fa H, Niu L. A portable magnetic electrochemical sensor for highly efficient Pb(II) detection based on bimetal composites from Fe-on-Co-MOF. ENVIRONMENTAL RESEARCH 2024; 250:118499. [PMID: 38368921 DOI: 10.1016/j.envres.2024.118499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
The practical, sensitive, and real-time detection of heavy metal ions is an essential and difficult problem. This study presents the design of a unique magnetic electrochemical detection system that can achieve real-time field detection. To enhance the electrochemical performance of the sensor, Fe2O3@C-800, Co/CoO@/C-600, and CoFe2O4@C-600 magnetic composites were synthesized using three MOFs precursors by the solvothermal method. And the morphology structure and electrochemical properties of as-prepared magnetic composites were researched by X-ray diffraction (XRD), Scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), specific surface area and porosity analyzer (BET) and differential pulse voltammetry (DPV). The results shown that these composites improve conductivity and stability while preserving the MOFs basic frame structure. Compared with the monometallic MOFs-derived composites, the synergistic effect of the bimetallic composite CoFe2O4@C-600 can significantly enhance the electrochemical performance of the sensor. The linear range for the detection of lead ions was 0.001-60 μM, and the detection limit was 0.0043 μM with a sensitivity of 22.22 μA μM·cm-2 by differential pulse voltammetry. The sensor has good selectivity, stability, reproducibility and can be used for actual sample testing.
Collapse
Affiliation(s)
- Yijiao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Siwei Jin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Renlong Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China; National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University, Chongqing, 400044, China
| | - Zuohua Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China; National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University, Chongqing, 400044, China
| | - Li Gong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Tengda Zhao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Wei Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China; National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University, Chongqing, 400044, China; Analytical and Testing Center of Chongqing University, Chongqing, 400044, China
| | - Shiqi Chen
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, China; Chongqing Institute for Food and Drug Control, China
| | - Huanbao Fa
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China; National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University, Chongqing, 400044, China.
| | - Lidan Niu
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, China; Chongqing Institute for Food and Drug Control, China.
| |
Collapse
|
7
|
Zhou X, Chen B, Wang W, Liu L, Li X, Chen L, Li Y, Xia Y, Ci L. Core-shell heterostructured Ni(OH) 2@activation Zn-Co-Ni layered double hydroxides electrode for flexible all-solid-state coaxial fiber-shaped asymmetric supercapacitors. J Colloid Interface Sci 2024; 661:781-792. [PMID: 38325176 DOI: 10.1016/j.jcis.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
The increasing requirements for wearable and portable electronics are driving the interests of high performance fiber supercapacitor. Layered double hydroxide (LDH) is broadly used in electrode materials, owing to the adjustability of components and the unique lamellar structure. However, limited active sites and poor electrical conductivity hinder its applications. Herein, the core-shell heterostructured Ni(OH)2@activation Zn-Co-Ni layered double hydroxides (Ni(OH)2@A-ZnCoNi-LDH) electrode was fabricated by loading pseudocapacitance material on the A-ZnCoNi-LDH to improve the electrochemical performance. Significantly, benefits from the synergistic effect of the multi-metal ions and the core-shell heterostructure, the electrodes demonstrated a capacitance of 2405 mF·cm-2 at 1 mA·cm-2. Furthermore, Ni(OH)2@A-ZnCoNi-LDH was used as the core electrode and carbon nanotube (CNT) film coated with Fe2O3@reduced graphene oxide (rGO) was wrapped around the core electrode to assemble coaxial fiber asymmetric supercapacitor, which illustrated an ultrahigh energy density of 177.7 µWh·cm-2 at 0.75 mW·cm-2. In particular, after consecutive charging and discharging 7000 cycles, the capacitance retention of the device was 95 %, indicating the excellent cycling stability. Furthermore, the device with high flexibility can be woven into textiles in different shapes. The fabricated device has an excellent development prospect as an energy source in wearable electronic devices.
Collapse
Affiliation(s)
- Xiaoshuang Zhou
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Bing Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Wei Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Liang Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Xiankai Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Long Chen
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China.
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Yanzhi Xia
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Lijie Ci
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| |
Collapse
|
8
|
Wang J, Xu H, Zhang R, Sun G, Dou H, Zhang X. Rational electrolyte design and electrode regulation for boosting high-capacity Zn-iodine fiber-shaped batteries with four-electron redox reactions. NANOSCALE 2024. [PMID: 38466180 DOI: 10.1039/d3nr06195g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Aqueous Zn ion-based fiber-shaped batteries (AZFBs) with the merits of high flexibility and safety have received much attention for powering wearable electronic devices. However, the relatively low specific capacity provided by cathode materials limits their practical application. Herein, we first propose a simple strategy for fabricating high-capacity Zn-iodine fiber-shaped batteries with a high concentration electrolyte and a reduced graphene oxide fiber (GF) cathode. It was found that oxygen functional groups in the graphene sheet demonstrate strong interaction with polyiodides but hinder electron conductivity; thus, the optimal balance between the specific capacity and coulombic efficiency of the GF electrode can be a function of the surface properties at different hydrothermal temperatures. Besides, the regulated high concentration electrolyte effectively suppresses the diffusion of polyiodides, which is attributed to the constrained freedom of water. More importantly, a four-electron redox mechanism was experimentally revealed through in situ Raman spectra. As a result, this fiber-shaped battery delivers a superior high reversible capacity of 390 mA h cm-3 at 1 A cm-3, an excellent rate performance of 125.7 mA h cm-3 at a high current density of 8 A cm-3 and outstanding cycling life with 82% capacitance retention after 2500 cycles.
Collapse
Affiliation(s)
- Jiuqing Wang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Hai Xu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Ruanye Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Gengzhi Sun
- Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hui Dou
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| |
Collapse
|
9
|
Li M, Luo Z, Quan J, Ding T, Xu B, Li W, Mao Q, Ma W, Xiang H, Zhu M. Oxygen defect enriched hematite nanorods @ reduced graphene oxide core-sheath fiber for superior flexible asymmetric supercapacitor. J Colloid Interface Sci 2024; 653:77-84. [PMID: 37708734 DOI: 10.1016/j.jcis.2023.09.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
The development of flexible asymmetric supercapacitors with high operating potential, superior energy density, and exceptional rate performance holds significant implications for the advancement of flexible electronics. Herein, oxygen-deficient hematite nanorods @ reduced graphene oxide (Fe2O3-x@RGO) core-sheath fiber was rationally designed and fabricated. The introduction of oxygen defects can simultaneously enhance the conductivity, create a mesoporous crystalline structure, increase active surface area and sites. This leads to a significantly improved electrochemical performance, exhibiting a high specific capacitance of 525.2F cm-3 at 5 mV s-1 and remarkable rate capability (53.7 % retention from 5 to 100 mV s-1). Additionally, a flexible asymmetric supercapacitor was assembled employing Fe2O3-x@RGO fibers as anode and MnO2/RGO fibers as cathode. This design achieved a maximum operating voltage of 2.35 V, high energy density of 71.4 mWh cm-3, and outstanding cycling stability with 97.1 % retention after 5000 cycles. This study proposes a straightforward and efficient strategy to substantially enhance the electrochemical performances of transition metal oxide anodes, thereby promoting their practical application in asymmetric supercapacitors.
Collapse
Affiliation(s)
- Min Li
- College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Zhengxin Luo
- College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Jiaxin Quan
- College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Ting Ding
- College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Bilin Xu
- College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Wanfei Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qinghui Mao
- College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Wujun Ma
- College of Textile and Garment, Nantong University, Nantong 226019, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
10
|
Dai Y, Zhang G, Peng Y, Li Y, Chi H, Pang H. Recent progress in 1D MOFs and their applications in energy and environmental fields. Adv Colloid Interface Sci 2023; 321:103022. [PMID: 39491441 DOI: 10.1016/j.cis.2023.103022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2024]
Abstract
Metal organic frameworks (MOFs) are porous coordination polymers with adjustable nanostructure, high porosity and large surface areas. These features make MOFs, their derivates and composites all delivered remarkable potential in energy and environmental fields, such as rechargeable batteries, supercapacitors, catalysts, water purification and desalination, gas treatment, toxic matter degradation, etc. In particular, one-dimensional (1D) MOFs have generated extensive attention due to their unique 1D nanostructures. To prepare 1D MOF nanostructures, it is necessary to explore and enhance synthesis routes. In this review, the preparation of 1D MOF materials and their recent process applied in energy and environmental fields will be discussed. The relationship between MOFs' 1D morphologies and the properties in their applications will also be analyzed. Finally, we will also summary and make perspectives about the future development of 1D MOFs in fabrication and applications in energy and environmental fields.
Collapse
Affiliation(s)
- Yunyi Dai
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Guangxun Zhang
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yi Peng
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yuan Li
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China.
| | - Heng Chi
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China.
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
11
|
Song Z, Hu H, Shu K, Liu T, Tang X, Zhou X, Li Y, Zhang Y. Novel Fe 2O 3 microspheres composed of triangular star-shaped nanorods as an electrode for supercapacitors. Chem Commun (Camb) 2023; 59:11791-11794. [PMID: 37681416 DOI: 10.1039/d3cc03809b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Fe2O3 microspheres with a unique structure were reported for the first time in this article and showed excellent cycling stability as a negative electrode for supercapacitors. A high areal specific capacitance of 1465.26 mF cm-2 was also achieved in sulfur-doped Fe2O3. An asymmetric supercapacitor was assembled demonstrating its potential for practical use.
Collapse
Affiliation(s)
- Zhiting Song
- College of Science, Chongqing University of Posts and Telecommunications, Chongqing, 400065, P. R. China.
| | - Hongming Hu
- College of Science, Chongqing University of Posts and Telecommunications, Chongqing, 400065, P. R. China.
| | - Kai Shu
- College of Science, Chongqing University of Posts and Telecommunications, Chongqing, 400065, P. R. China.
| | - Tao Liu
- College of Science, Chongqing University of Posts and Telecommunications, Chongqing, 400065, P. R. China.
| | - Xiao Tang
- College of Science, Chongqing University of Posts and Telecommunications, Chongqing, 400065, P. R. China.
| | - Xianju Zhou
- College of Science, Chongqing University of Posts and Telecommunications, Chongqing, 400065, P. R. China.
| | - Yanhong Li
- College of Science, Chongqing University of Posts and Telecommunications, Chongqing, 400065, P. R. China.
| | - Yunhuai Zhang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China.
| |
Collapse
|
12
|
Wang LY, Cai ZP, Ma C, Wang KX, Chen JS. Poly( p-phenylenediamine)-Coated Metal-Organic Frameworks for High-Performance Sodium-Ion Batteries: The Balance of Capacity and Stability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44364-44372. [PMID: 37668259 DOI: 10.1021/acsami.3c10751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Metal-organic frameworks (MOFs) with well-defined porous structures and highly active frameworks are considered as promising electrode materials for sodium-ion batteries (SIBs). However, the structure pulverization upon sodiation/desodiation impacts on their practical application in SIBs. To address this issue, poly(p-phenylenediamine) (PPA) was uniformly coated onto the surface of MIL-88A, a typical Fe-based MOF through in situ polymerization initiated by the metal ions (Fe3+) of MIL-88A. Used as an anode material for SIBs, the PPA-coated MIL-88A, denoted as PPA@MIL-88A, showed significantly improved electrochemical performance. A reversible capacity as high as 230 mAh g-1 was achieved at 0.2 A g-1 even after 500 cycles. MIL-88A constructed with electrochemically active Fe3+ and fumaric acid ligands guarantees the high specific capacity, while the PPA polymer coating effectively inhibits the pulverization of MIL-88A. This work provides an efficient strategy for improving the structure and cycling stability of MOFs-based electrode materials.
Collapse
Affiliation(s)
- Liang-Yu Wang
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhi-Peng Cai
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chao Ma
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kai-Xue Wang
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jie-Sheng Chen
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
13
|
Ashoori A, Noori A, Rahmanifar MS, Morsali A, Hassani N, Neek-Amal M, Ghasempour H, Xia X, Zhang Y, El-Kady MF, Kaner RB, Mousavi MF. Tailoring Metal-Organic Frameworks and Derived Materials for High-Performance Zinc-Air and Alkaline Batteries. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37311056 DOI: 10.1021/acsami.3c04454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing multifunctional materials from earth-abundant elements is urgently needed to satisfy the demand for sustainable energy. Herein, we demonstrate a facile approach for the preparation of a metal-organic framework (MOF)-derived Fe2O3/C, composited with N-doped reduced graphene oxide (MO-rGO). MO-rGO exhibits excellent bifunctional electrocatalytic activities toward the oxygen evolution reaction (ηj=10 = 273 mV) and the oxygen reduction reaction (half-wave potential = 0.77 V vs reversible hydrogen electrode) with a low ΔEOER-ORR of 0.88 V in alkaline solutions. A Zn-air battery based on the MO-rGO cathode displays a high specific energy of over 903 W h kgZn-1 (∼290 mW h cm-2), an excellent power density of 148 mW cm-2, and an open-circuit voltage of 1.430 V, outperforming the benchmark Pt/C + RuO2 catalyst. We also hydrothermally synthesized a Ni-MOF that was partially transformed into a Ni-Co-layered double hydroxide (MOF-LDH). A MO-rGO||MOF-LDH alkaline battery exhibits a specific energy of 42.6 W h kgtotal mass-1 (106.5 μW h cm-2) and an outstanding specific power of 9.8 kW kgtotal mass-1 (24.5 mW cm-2). This work demonstrates the potential of MOFs and MOF-derived compounds for designing innovative multifunctional materials for catalysis, electrochemical energy storage, and beyond.
Collapse
Affiliation(s)
- Atefeh Ashoori
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Abolhassan Noori
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | | | - Ali Morsali
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Nasim Hassani
- Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran, P.O. Box: 16875-163, Iran
| | - Mehdi Neek-Amal
- Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran, P.O. Box: 16875-163, Iran
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Hosein Ghasempour
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Xinhui Xia
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yongqi Zhang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 611371, China
| | - Maher F El-Kady
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Richard B Kaner
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Mir F Mousavi
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| |
Collapse
|
14
|
Wang D, Zhou Q, Fu H, Lian Y, Zhang H. A Fe 2(SO 4) 3-assisted approach towards green synthesis of cuttlefish ink-derived carbon nanospheres for high-performance supercapacitors. J Colloid Interface Sci 2023; 638:695-708. [PMID: 36780850 DOI: 10.1016/j.jcis.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/29/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
The conversion of renewable biomass resources into advanced electrode materials through green, simple, and economical methods has become an important research direction in energy storage. In this study, Fe-decorated N/S-codoped porous carbon nanospheres have been successfully fabricated from cuttlefish ink through Fe2(SO4)3-assisted hydrothermal carbonization coupled with heat treatment. The effects of Fe2(SO4)3 dosage on the structure, chemical composition, and capacitive property of carbon nanospheres were investigated. Herein, environmentally friendly Fe2(SO4)3 plays a multifunctional role as the graphitization catalyst, dopant, and morphology-regulating agent. Benefitting from the moderate graphitization degree, great heteroatom content and hierarchical porous structure, the prepared carbon nanospheres exhibit high specific capacitance (311.9 F g-1 at a current density of 0.5 A g-1), good rate capability (19.1% decrease in specific capacitance as current density increases from 0.5 to 10 A g-1), and ideal cycling stability (94.3% capacitance retention after 5000 cycles). In addition, the symmetric supercapacitor assembled with the carbon nanosphere electrodes achieves an energy density of 9.7 Wh kg-1 at a power density of 0.25 kW kg-1 and maintains 91.3% capacitance after 10,000 cycles. The desirable electrochemical performance of cuttlefish ink-derived carbon nanosphere material makes it a potential electrode candidate for supercapacitors.
Collapse
Affiliation(s)
- Dawei Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qiuping Zhou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Hongliang Fu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yue Lian
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Huaihao Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
15
|
Fu M, Chen W, Lei Y, Yu H, Lin Y, Terrones M. Biomimetic Construction of Ferrite Quantum Dot/Graphene Heterostructure for Enhancing Ion/Charge Transfer in Supercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300940. [PMID: 36921960 DOI: 10.1002/adma.202300940] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Indexed: 05/26/2023]
Abstract
Spinel ferrites are regarded as promising electrode materials for supercapacitors (SCs) in virtue of their low cost and high theoretical specific capacitances. However, bulk ferrites suffer from limited electrical conductivity, sluggish ion transport, and inadequate active sites. Therefore, rational structural design and composition regulation of the ferrites are approaches to overcome these limitations. Herein, a general biomimetic mineralization synthetic strategy is proposed to synthesize ferrite (XFe2 O4 , X = Ni, Co, Mn) quantum dot/graphene (QD/G) heterostructures. Anchoring ferrite QD on the graphene sheets not only strengthens the structural stability, but also forms the electrical conductivity network needed to boost the ion diffusion and charge transfer. The optimized NiFe2 O4 QD/G heterostructure exhibits specific capacitances of 697.5 F g-1 at 1 A g-1 , and exceptional cycling performance. Furthermore, the fabricated symmetrical SCs deliver energy densities of 24.4 and 17.4 Wh kg-1 at power densities of 499.3 and 4304.2 W kg-1 , respectively. Density functional theory calculations indicate the combination of NiFe2 O4 QD and graphene facilitates the adsorption of potassium atoms, ensuring rapid ion/charge transfer. This work enriches the application of the biomimetic mineralization synthesis and provides effective strategies for boosting ion/charge transfer, which may offer a new way to develop advanced electrodes for SCs.
Collapse
Affiliation(s)
- Min Fu
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Wei Chen
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yu Lei
- Institute of Materials Research Center of Double Helix Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hao Yu
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yuxiao Lin
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mauricio Terrones
- Department of Physics, Department of Chemistry, Department of Materials Sciences, Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
- Research Initiative for Supra-Materials, Shinshu University, Nagano, 380-8553, Japan
| |
Collapse
|
16
|
Wan H, Hu L, Liu X, Zhang Y, Chen G, Zhang N, Ma R. Advanced hematite nanomaterials for newly emerging applications. Chem Sci 2023; 14:2776-2798. [PMID: 36937591 PMCID: PMC10016337 DOI: 10.1039/d3sc00180f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Because of the combined merits of rich physicochemical properties, abundance, low toxicity, etc., hematite (α-Fe2O3), one of the most chemically stable compounds based on the transition metal element iron, is endowed with multifunctionalities and has steadily been a research hotspot for decades. Very recently, advanced α-Fe2O3 materials have also been developed for applications in some cutting-edge fields. To reflect this trend, the latest progress in developing α-Fe2O3 materials for newly emerging applications is reviewed with a particular focus on the relationship between composition/nanostructure-induced electronic structure modulation and practical performance. Moreover, perspectives on the critical challenges as well as opportunities for future development of diverse functionalities are also discussed. We believe that this timely review will not only stimulate further increasing interest in α-Fe2O3 materials but also provide a profound understanding and insight into the rational design of other materials based on transition metal elements for various applications.
Collapse
Affiliation(s)
- Hao Wan
- Zhongyuan Critical Metals Laboratory, School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 PR China
| | - Linfeng Hu
- School of Materials Science and Engineering, Southeast University Nanjing 211189 P. R. China
| | - Xiaohe Liu
- Zhongyuan Critical Metals Laboratory, School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 PR China
- School of Materials Science and Engineering, Central South University Changsha 410083 PR China
| | - Ying Zhang
- Zhongyuan Critical Metals Laboratory, School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 PR China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University Changsha 410083 PR China
| | - Ning Zhang
- School of Materials Science and Engineering, Central South University Changsha 410083 PR China
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) Namiki 1-1, Tsukuba Ibaraki 305-0044 Japan
| |
Collapse
|
17
|
Otgonbayar Z, Yang S, Kim IJ, Oh WC. Recent Advances in Two-Dimensional MXene for Supercapacitor Applications: Progress, Challenges, and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:919. [PMID: 36903797 PMCID: PMC10005138 DOI: 10.3390/nano13050919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
MXene is a type of two-dimensional (2D) transition metal carbide and nitride, and its promising energy storage materials highlight its characteristics of high density, high metal-like conductivity, tunable terminals, and charge storage mechanisms known as pseudo-alternative capacitance. MXenes are a class of 2D materials synthesized by chemical etching of the A element in MAX phases. Since they were first discovered more than 10 years ago, the number of distinct MXenes has grown substantially to include numerous MnXn-1 (n = 1, 2, 3, 4, or 5), solid solutions (ordered and disordered), and vacancy solids. To date, MXenes used in energy storage system applications have been broadly synthesized, and this paper summarizes the current developments, successes, and challenges of using MXenes in supercapacitors. This paper also reports the synthesis approaches, various compositional issues, material and electrode topology, chemistry, and hybridization of MXene with other active materials. The present study also summarizes MXene's electrochemical properties, applicability in pliant-structured electrodes, and energy storage capabilities when using aqueous/non-aqueous electrolytes. Finally, we conclude by discussing how to reshape the face of the latest MXene and what to consider when designing the next generation of MXene-based capacitors and supercapacitors.
Collapse
Affiliation(s)
- Zambaga Otgonbayar
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si 356-706, Republic of Korea
| | - Sunhye Yang
- Korea Electrotechnology Reserch Institute, Next Generation Battery Research Center, 12, Jeongiui-gil, Seongsan-gu, Changwon-si 51543, Republic of Korea
| | - Ick-Jun Kim
- Korea Electrotechnology Reserch Institute, Next Generation Battery Research Center, 12, Jeongiui-gil, Seongsan-gu, Changwon-si 51543, Republic of Korea
| | - Won-Chun Oh
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si 356-706, Republic of Korea
| |
Collapse
|
18
|
Chen J, Zhu K, Rao Y, Liang P, Zhang J, Zheng H, Shi F, Yan K, Wang J, Liu J. Low volume expansion hierarchical porous sulfur-doped Fe 2O 3@C with high-rate capability for superior lithium storage. Dalton Trans 2023; 52:1919-1926. [PMID: 36722790 DOI: 10.1039/d2dt03810b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ingenious morphology design and doping engineering have remarkable effects on enhancing conductivity and reducing volume expansion, which need to be improved by transition metal oxides serving as anode materials for lithium-ion batteries. Herein, S0.15-Fe2O3@C nano-spindles with a hierarchical porous structure are obtained by carbonizing MIL-88B@PDA and subsequent high-temperature S-doping. Kinetic analysis showed that S-doping increases capacitive contribution, enhances charge transfer capability and accelerates Li+ diffusion rate. Therefore, the S0.15-Fe2O3@C electrode exhibits superior lithium storage performance with a remarkable specific capacity of 1014.4 mA h g-1 at 200 mA g-1, ultrahigh rate capability of 513.1 mA h g-1 at 5.0 A g-1, and excellent cycling stability of 842.3 mA h g-1 at 1.0 A g-1 after 500 cycles. Moreover, the size of S0.15-Fe2O3@C particles barely changed after 50 cycles, indicating an extremely low volume expansion, related to the carbon shell, fine Fe2O3 nanoparticles, abundant voids inside, and improved kinetics. This strategy can be applied to other metal oxides for synthesizing anodes with high-rate capability and low volume expansion.
Collapse
Affiliation(s)
- Jiatao Chen
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China. .,College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Kongjun Zhu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Yu Rao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China. .,College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Penghua Liang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China. .,College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jie Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China. .,College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Hongjuan Zheng
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Feng Shi
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Kang Yan
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Jing Wang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Jinsong Liu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
19
|
Hong JL, Liu JH, Xiong X, Qin SY, Xu XY, Meng X, Gu K, Tang J, Chen DZ. Temperature-dependent pseudocapacitive behaviors of polyaniline-based all-solid-state fiber supercapacitors. Electrochem commun 2023. [DOI: 10.1016/j.elecom.2023.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
20
|
Xiao W, Cheng M, Liu Y, Wang J, Zhang G, Wei Z, Li L, Du L, Wang G, Liu H. Functional Metal/Carbon Composites Derived from Metal–Organic Frameworks: Insight into Structures, Properties, Performances, and Mechanisms. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wenjun Xiao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Yang Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jun Wang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Gaoxia Zhang
- Carbon Neutrality Research Institute of Power China Jiangxi Electric Power Construction Co., Ltd., Nanchang 330001, China
| | - Zhen Wei
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Hongda Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| |
Collapse
|
21
|
Alamgholiloo H, Noroozi Pesyan N, Poursattar Marjani A. Visible-light-responsive Z-scheme α-Fe2O3/SWCNT/NH2-MIL-125 heterojunction for boosted photodegradation of ofloxacin. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Kumar N, Juyal A, Gajraj V, Upadhyay S, Priyadarshi N, Chetana S, Chandra Joshi N, Sen A. Facile synthesis of fine 1D VO2 and its supercapacitance as a binder free electrode. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
Lokhande P, Kulkarni S, Chakrabarti S, Pathan H, Sindhu M, Kumar D, Singh J, Kumar A, Kumar Mishra Y, Toncu DC, Syväjärvi M, Sharma A, Tiwari A. The progress and roadmap of metal–organic frameworks for high-performance supercapacitors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
3D-C-Fe4N@NiCu/Metallic Macroporous Frameworks for Binder-free Compact Hybrid Supercapacitors with High Areal Capacities. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Mubarak S, Dhamodharan D, Ghoderao PN, Byun HS. A systematic review on recent advances of metal–organic frameworks-based nanomaterials for electrochemical energy storage and conversion. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
MOF-derived anion exchange induced 2D/2D CF@CoS2/Co3O4/CNFs for ultra-long stable asymmetric supercapacitors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Han L, Luo J, Zhang R, Gong W, Chen L, Liu F, Ling Y, Dong Y, Yong Z, Zhang Y, Wei L, Zhang X, Zhang Q, Li Q. Arrayed Heterostructures of MoS 2 Nanosheets Anchored TiN Nanowires as Efficient Pseudocapacitive Anodes for Fiber-Shaped Ammonium-Ion Asymmetric Supercapacitors. ACS NANO 2022; 16:14951-14962. [PMID: 36037075 DOI: 10.1021/acsnano.2c05905] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nonmetallic ammonium ions that feature high safety, low molar mass, and small hydrated radius properties have shown great advantages in wearable aqueous supercapacitors. The construction of high-energy-density flexible ammonium-ion asymmetric supercapacitors (AASCs) is promising but still challenging due to the lack of high-capacitance pseudocapacitive anodes. Herein, freestanding core-shell heterostructures supported on carbon nanotube fibers were designed by anchoring MoS2 nanosheets on nanowires (MoS2@TiN/CNTF) as anodes for AASCs. With contributions of abundant active sites and conspicuous synergistic effects of multiple components for arrayed heterostructure engineering, the developed MoS2@TiN/CNTF anodes exhibit a specific capacitance of 1102.5 mF cm-2 at 2 mA cm-2. Theoretical calculations confirm the dramatic enhancement of the binding strength of ammonium ions on the MoS2 shell layer at the heterostructure, where a built-in electric field exists to accelerate the charge transfer. By utilizing a MnO2/CNTF cathode and NH4Cl/poly(vinyl alcohol) (PVA) as a gel electrolyte, quasi-solid-state fiber-shaped AASCs were successfully constructed, achieving a specific capacitance of 351.2 mF cm-2 and an energy density of 195.1 μWh cm-2, outperforming most recently reported fiber-shaped supercapacitors. This work provides a promising strategy to rationally design heterostructure engineering of MoS2@TiN nanoarrays toward advanced anodes for application in next-generation AASCs.
Collapse
Affiliation(s)
- Lijie Han
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jie Luo
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Rongkang Zhang
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Long Chen
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Fan Liu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ying Ling
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yihao Dong
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhenzhong Yong
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Insitute of Nanotechnology, Nanchang 330200, China
| | - Yongyi Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Insitute of Nanotechnology, Nanchang 330200, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Insitute of Nanotechnology, Nanchang 330200, China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
28
|
Xue Z, Lu J. Fabrication and application of Fe 2O 3-decorated carbon nanotube fibers via instantaneous Joule-heating method. NANOTECHNOLOGY 2022; 33:455601. [PMID: 35896090 DOI: 10.1088/1361-6528/ac8486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Fe2O3-decorated carbon nanotube fibers (Fe2O3/CNT fibers) exhibit synergistic properties and can be used in flexible electrochemical devices. One of the greatest challenges is to synthesize homogeneous Fe2O3on CNT fibers. In this paper, we have anchored Fe2O3nanocrystals compactly and uniformly in CNT fibers via the instantaneous Joule-heating method. By regulating the current intensity, iron catalysts in CNT fibers can be directly converted into Fe2O3nanocrystals. This method can also prepare Fe2O3particles of different sizes by adjusting the current value. The distinct structure of Fe2O3/CNT fibers contributed to their excellent electrochemical performance. Because cobaltocene and nickelocene can also be used as catalysts to prepare CNT fibers, this method is expected to be a universal method for the composite of transition metal oxide and CNT fibers.
Collapse
Affiliation(s)
- Zhiping Xue
- Institute of Manufacturing Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
- National & Local Joint Engineering Research Center for Intelligent Manufacturing Technology of Brittle Material Products, Xiamen, 361021, People's Republic of China
| | - Jing Lu
- Institute of Manufacturing Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
- National & Local Joint Engineering Research Center for Intelligent Manufacturing Technology of Brittle Material Products, Xiamen, 361021, People's Republic of China
| |
Collapse
|
29
|
Wang B, Peng J, Yang K, Cheng H, Yin Y, Wang C. Multifunctional Textile Electronic with Sensing, Energy Storing, and Electrothermal Heating Capabilities. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22497-22509. [PMID: 35522598 DOI: 10.1021/acsami.2c06701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of wearable devices has stimulated significant engineering and technologies of textile electronics (TEs). Improving sensing, energy-storing, and electro-heating capabilities of TEs is still challenging but crucial for their practical applications. Herein, a drip-coating method that constructs a dense β-FeOOH scaffold on a nylon strip for enhancing polypyrrole loading is proposed, which facilitates the fabrication of highly conductive and hydrophobic PFCNS (polypyrrole/β-FeOOH/nylon strip). The space provided by the β-FeOOH scaffold increases the mass of polypyrrole on fibers from 1.1 (polypyrrole/nylon strip) to 3.0 mg cm-2 (polypyrrole/β-FeOOH/nylon strip), which decreases the resistance from 104.96 to 34.29 Ω cm-1. The PFCNS exhibits a linear elastic modulus of 0.758 MPa within 150% strain, performs a unique resistance variation mechanism, and enables great sensing capability with rapid response time (140 ms), long durability (10,000 stretching-recovering), and effective movement monitoring (e.g., breathing, back bending, jumping). The sensing signals for knee bending have been analyzed in detail by combining with both stretching and pressing response mechanisms. The PFCNS electrode attains a diffusion-controlled capacitance of 574 mF cm-2 and discharging-capacitance of 916 mF cm-2. Furthermore, an interdigitally parallel connection is proposed, which assists the PFCNS heater in achieving high temperature (84 °C) at a low voltage (4 V). This work provides a simple route for nylon-based TEs and promises satisfactory application in wearable sensors, power sources, and heaters.
Collapse
Affiliation(s)
- Bo Wang
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jun Peng
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Kun Yang
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Haonan Cheng
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Yunjie Yin
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Chaoxia Wang
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
30
|
He B, Zhang Q, Pan Z, Li L, Li C, Ling Y, Wang Z, Chen M, Wang Z, Yao Y, Li Q, Sun L, Wang J, Wei L. Freestanding Metal-Organic Frameworks and Their Derivatives: An Emerging Platform for Electrochemical Energy Storage and Conversion. Chem Rev 2022; 122:10087-10125. [PMID: 35446541 PMCID: PMC9185689 DOI: 10.1021/acs.chemrev.1c00978] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Metal–organic
frameworks (MOFs) have recently emerged as
ideal electrode materials and precursors for electrochemical energy
storage and conversion (EESC) owing to their large specific surface
areas, highly tunable porosities, abundant active sites, and diversified
choices of metal nodes and organic linkers. Both MOF-based and MOF-derived
materials in powder form have been widely investigated in relation
to their synthesis methods, structure and morphology controls, and
performance advantages in targeted applications. However, to engage
them for energy applications, both binders and additives would be
required to form postprocessed electrodes, fundamentally eliminating
some of the active sites and thus degrading the superior effects of
the MOF-based/derived materials. The advancement of freestanding electrodes
provides a new promising platform for MOF-based/derived materials
in EESC thanks to their apparent merits, including fast electron/charge
transmission and seamless contact between active materials and current
collectors. Benefiting from the synergistic effect of freestanding
structures and MOF-based/derived materials, outstanding electrochemical
performance in EESC can be achieved, stimulating the increasing enthusiasm
in recent years. This review provides a timely and comprehensive overview
on the structural features and fabrication techniques of freestanding
MOF-based/derived electrodes. Then, the latest advances in freestanding
MOF-based/derived electrodes are summarized from electrochemical energy
storage devices to electrocatalysis. Finally, insights into the currently
faced challenges and further perspectives on these feasible solutions
of freestanding MOF-based/derived electrodes for EESC are discussed,
aiming at providing a new set of guidance to promote their further
development in scale-up production and commercial applications.
Collapse
Affiliation(s)
- Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang 330200, China
| | - Zhenghui Pan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 Singapore
| | - Lei Li
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Chaowei Li
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, China
| | - Ying Ling
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Mengxiao Chen
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yagang Yao
- College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 Singapore.,Institute of Materials Research and Engineering, A*Star, Singapore 138634, Singapore
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
31
|
Yan J, Liu T, Liu X, Yan Y, Huang Y. Metal-organic framework-based materials for flexible supercapacitor application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214300] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Koli RR, Deshpande NG, Kim DS, Cho HK. A synergistic strategy to remove hazardous water pollutants by mimicking burdock flower morphology structures of iron oxide phases. CHEMOSPHERE 2022; 286:131789. [PMID: 34426139 DOI: 10.1016/j.chemosphere.2021.131789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Artificially mimicking structures/morphologies available in the nature to develop multifunctional materials for catalysis is receiving greater attention. Particularly, the burdock flower morphology, which has a hollow-globe surrounded by spiky sheets, represents a multifunctional structure helpful in adsorption as well as intercalation of molecules. Given this, we have strategically developed a robust microwave (MW) bubble-template process to achieve highly uniform α-Fe2O3 and carbon-enriched Fe3O4 (Fe3O4@C) phases resembling the characteristics of spiky hollow burdock morphologies. The utilization of the MW bubble-templates as a pretreatment to the iron-based precursor solution helps in producing hollowed open-space ferrous glycolate burdock flower morphology with rapid production rate and without any addition of extra agents. Such burdock flower structures remain intact even after annealing in air/N2 ambiance providing highly photoactive α-Fe2O3 or magnetic Fe3O4@C, respectively. Utilizing the hollow burdock flower structures together with the individual photo/magnetic properties of iron oxide phases, a dual-layer filter was designed to remove hazardous dye molecules from water, which efficiently photodegraded (99.2 %) in natural sunlight as well as showed excellent adsorption (99.7 %) within minutes. Comparatively, a lower catalytic activity using simple iron oxide nanoparticles, closed, and faded burdock morphologies were seen. Hence, the high catalytic activity in removing the dye molecules, retention of structural phases after repeated use, and strong durability were a result of the synergetic effect of photo/magnetic properties, activated surface/spiky open burdock structure.
Collapse
Affiliation(s)
- Rohit R Koli
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Nishad G Deshpande
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea; Indian Institute of Information Technology, Surat, 395007, Gujarat, India
| | - Dong Su Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Hyung Koun Cho
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea; Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
33
|
He Q, Peng Z, Li S, Tan L, Chen Y. High‐Energy Aqueous Asymmetric Supercapacitors via Synergistic Design of Electrodes Derived from Hierarchical Vanadium Dioxide Nanocomposites. ChemElectroChem 2021. [DOI: 10.1002/celc.202101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qichang He
- Nanchang University College of Chemistry 999 Xuefu Avenue Nanchang CHINA
| | - Zhongyou Peng
- Nanchang University College of Chemistry 999 Xuefu Avenue Nanchang CHINA
| | - Shulong Li
- Nanchang University College of Chemistry 999 Xuefu Avenue Nanchang CHINA
| | - Licheng Tan
- Nanchang University College of Chemistry 999 Xuefu Avenue Nanchang CHINA
| | - Yiwang Chen
- Nanchang University College of Chemistry 999 Xuefu Avenue 330031 Nanchang CHINA
| |
Collapse
|
34
|
Kumar S, Misra A. Three-dimensional carbon foam-metal oxide-based asymmetric electrodes for high-performance solid-state micro-supercapacitors. NANOSCALE 2021; 13:19453-19465. [PMID: 34790988 DOI: 10.1039/d1nr02833b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A three-dimensional carbon foam (CF)-based asymmetric planar micro-supercapacitor is fabricated by the direct spray patterning of active materials on an array of interdigital electrodes. The solid-state asymmetric micro-supercapacitor comprises the CF network with pseudocapacitive metal oxides (manganese oxide (MnO), iron oxide (Fe2O3)), where CF-MnO composite as a positive electrode, and CF-Fe2O3 as negative electrode for superior electrochemical performance. The micro-supercapacitor, CF-MnO//CF-Fe2O3, attains an ultrahigh supercapacitance of 18.4 mF cm-2 (2326.8 mF cm-3) at a scan rate of 5 mV s-1. A wider potential window of 1.4 V is achieved with a high energy density of 5 μW h cm-2. The excellent cyclic stability is confirmed by 86.1% capacitance retention after 10 000 electrochemical cycles.
Collapse
Affiliation(s)
- Sumana Kumar
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Abha Misra
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
35
|
Zhang F, Sherrell PC, Luo W, Chen J, Li W, Yang J, Zhu M. Organic/Inorganic Hybrid Fibers: Controllable Architectures for Electrochemical Energy Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102859. [PMID: 34633752 PMCID: PMC8596128 DOI: 10.1002/advs.202102859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/28/2021] [Indexed: 05/29/2023]
Abstract
Organic/inorganic hybrid fibers (OIHFs) are intriguing materials, possessing an intrinsic high specific surface area and flexibility coupled to unique anisotropic properties, diverse chemical compositions, and controllable hybrid architectures. During the last decade, advanced OIHFs with exceptional properties for electrochemical energy applications, including possessing interconnected networks, abundant active sites, and short ion diffusion length have emerged. Here, a comprehensive overview of the controllable architectures and electrochemical energy applications of OIHFs is presented. After a brief introduction, the controllable construction of OIHFs is described in detail through precise tailoring of the overall, interior, and interface structures. Additionally, several important electrochemical energy applications including rechargeable batteries (lithium-ion batteries, sodium-ion batteries, and lithium-sulfur batteries), supercapacitors (sandwich-shaped supercapacitors and fiber-shaped supercapacitors), and electrocatalysts (oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction) are presented. The current state of the field and challenges are discussed, and a vision of the future directions to exploit OIHFs for electrochemical energy devices is provided.
Collapse
Affiliation(s)
- Fangzhou Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Peter C. Sherrell
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research Institute (IPRI)Australian Institute of Innovative Materials (AIIM)University of WollongongWollongongNSW2522Australia
| | - Wei Li
- Department of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsiChEM and State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| |
Collapse
|
36
|
Guo M, Sun J, Liu Y, Huangfu C, Wang R, Han C, Qu Z, Wang N, Zhao L, Zheng Q. Optimizing Fe2O3-based supercapacitor cathode with tunable surface pseudocapacitance via facile in situ vulcanization process. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Wang Y, Zhou J, Zhou Z, Lv H, Gu B, Wang K, Chen Z, Yan X, Zhang J, Liu WW, Chueh YL. In situ synthesis of Fe 2O 3 nanosphere/Co 3O 4 nanowire-connected reduced graphene oxide hybrid networks for high-performance supercapacitors. NANOSCALE 2021; 13:15431-15444. [PMID: 34505618 DOI: 10.1039/d1nr00126d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Three-dimensional (3D) hybrid networks consisting of reduced graphene oxide (rGO) sheets interconnected by Co3O4 nanowires (rGO/Co3O4), followed by the decoration of Fe2O3 nanospheres (NSs) (rGO/Co3O4@Fe2O3), were demonstrated by a facile hydrothermal method, with which the rGO/Co3O4 networks acted as nucleation sites for the in situ synthesis of Fe2O3 NSs. The intimate contacts between rGO, Co3O4 NWs and Fe2O3 NSs, which result in an excellent conductive behavior, provide a unique structure with huge potential for electrochemical property promoted electrochemical supercapacitors. The rGO/Co3O4@Fe2O3 hybrid networks as electrodes exhibit a high capacitance of 784 F g-1 at 1 A g-1 with 83% retention of the initial capacitance as the current density increases from 1 to 10 A g-1, which is explained by the graphene-based interconnected structure owing to the advantages of accommodating the volume expansion between Co3O4 NWs and Fe2O3 NSs. The supercapacitor was assembled by applying a nickel aluminum layered double hydroxide (NiAl-LDH) structure and rGO/Co3O4@Fe2O3 as the electrode materials and yields an energy density of 70.78 W h kg-1 at a power density of 0.29 kW kg-1. The energy density can maintain 24.24 W h kg-1 with 9.94 kW kg-1.
Collapse
Affiliation(s)
- Yan Wang
- School of Optoelectronic Science and Engineering of UESTC, University of Electronic Science and Technology of China, Jianshe North Road 4, 610054 Chengdu, China.
- Sichuan Province Key Laboratory of Display Science and Technology, Jianshe North Road 4, 610054 Chengdu, China
| | - Jianhao Zhou
- School of Optoelectronic Science and Engineering of UESTC, University of Electronic Science and Technology of China, Jianshe North Road 4, 610054 Chengdu, China.
| | - Zhiyu Zhou
- School of Optoelectronic Science and Engineering of UESTC, University of Electronic Science and Technology of China, Jianshe North Road 4, 610054 Chengdu, China.
| | - Huifang Lv
- School of Optoelectronic Science and Engineering of UESTC, University of Electronic Science and Technology of China, Jianshe North Road 4, 610054 Chengdu, China.
| | - Bingni Gu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Kuangye Wang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Zexiang Chen
- School of Optoelectronic Science and Engineering of UESTC, University of Electronic Science and Technology of China, Jianshe North Road 4, 610054 Chengdu, China.
- Sichuan Province Key Laboratory of Display Science and Technology, Jianshe North Road 4, 610054 Chengdu, China
| | - Xinyu Yan
- School of Optoelectronic Science and Engineering of UESTC, University of Electronic Science and Technology of China, Jianshe North Road 4, 610054 Chengdu, China.
| | - Jijun Zhang
- School of Optoelectronic Science and Engineering of UESTC, University of Electronic Science and Technology of China, Jianshe North Road 4, 610054 Chengdu, China.
| | - Wen-Wu Liu
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
38
|
Lyu L, Hooch Antink W, Kim YS, Kim CW, Hyeon T, Piao Y. Recent Development of Flexible and Stretchable Supercapacitors Using Transition Metal Compounds as Electrode Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101974. [PMID: 34323350 DOI: 10.1002/smll.202101974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Flexible and stretchable supercapacitors (FS-SCs) are promising energy storage devices for wearable electronics due to their versatile flexibility/stretchability, long cycle life, high power density, and safety. Transition metal compounds (TMCs) can deliver a high capacitance and energy density when applied as pseudocapacitive or battery-like electrode materials owing to their large theoretical capacitance and faradaic charge-storage mechanism. The recent development of TMCs (metal oxides/hydroxides, phosphides, sulfides, nitrides, and selenides) as electrode materials for FS-SCs are discussed here. First, fundamental energy-storage mechanisms of distinct TMCs, various flexible and stretchable substrates, and electrolytes for FS-SCs are presented. Then, the electrochemical performance and features of TMC-based electrodes for FS-SCs are categorically analyzed. The gravimetric, areal, and volumetric energy density of SC using TMC electrodes are summarized in Ragone plots. More importantly, several recent design strategies for achieving high-performance TMC-based electrodes are highlighted, including material composition, current collector design, nanostructure design, doping/intercalation, defect engineering, phase control, valence tuning, and surface coating. Integrated systems that combine wearable electronics with FS-SCs are introduced. Finally, a summary and outlook on TMCs as electrodes for FS-SCs are provided.
Collapse
Affiliation(s)
- Lulu Lyu
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Wytse Hooch Antink
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Seong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Chae Won Kim
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yuanzhe Piao
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
- Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| |
Collapse
|
39
|
Li Q. Interfacial Control of NiCoP@NiCoP Core-Shell Nanoflake Arrays as Advanced Cathodes for Ultrahigh-Energy-Density Fiber-Shaped Asymmetric Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101617. [PMID: 34235844 DOI: 10.1002/smll.202101617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Efficient improvement of the energy density and overall electrochemical performance of fiber-shaped asymmetric supercapacitors (FASCs) for practical applications in portable and wearable electronics requires highly electrochemically active materials and a rational design. Herein, two-step phosphorization (TSP) processes are performed to directly grow 3D well-aligned NiCoP@NiCoP (NCP@NCP TSP) nanoflake arrays (NFAs) on carbon nanotube fibers (CNTFs). Profiting from the metallic characteristics and excellent electrochemical performance of NiCoP and the hierarchical design of the core-shell heterostructure, the NCP@NCP TSP NFAs/CNTF hybrid electrode exhibits significantly improved electrochemical performance. The as-fabricated NCP@NCP TSP NFAs/CNTF electrode possesses an ultrahigh areal capacitance of 10 035 mF cm-2 at a current density of 1 mA cm-2 , with excellent rate capability and cycling stability. Furthermore, an FASC device with a maximum operating voltage of 1.6 V is assembled by adopting NCP@NCP TSP NFAs/CNTF as a positive electrode, hierarchical TiN@VN core-shell heterostructure nanowire arrays (NWAs)/CNTF as negative electrode, and KOH-PVA as a gel electrolyte. The FASC device exhibits a high areal capacitance of 430.4 mF cm-2 and an ultrahigh energy density of 51.02 mWh cm-3 . Thus, the rationally designed NiCoP@NiCoP electrode is a promising candidate for incorporation into next-generation wearable and portable energy-storage devices.
Collapse
Affiliation(s)
- Qiulong Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
40
|
Fakharuddin A, Li H, Di Giacomo F, Zhang T, Gasparini N, Elezzabi AY, Mohanty A, Ramadoss A, Ling J, Soultati A, Tountas M, Schmidt‐Mende L, Argitis P, Jose R, Nazeeruddin MK, Mohd Yusoff ARB, Vasilopoulou M. Fiber‐Shaped Electronic Devices. ADVANCED ENERGY MATERIALS 2021; 11. [DOI: 10.1002/aenm.202101443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 09/02/2023]
Abstract
AbstractTextile electronics embedded in clothing represent an exciting new frontier for modern healthcare and communication systems. Fundamental to the development of these textile electronics is the development of the fibers forming the cloths into electronic devices. An electronic fiber must undergo diverse scrutiny for its selection for a multifunctional textile, viz., from the material selection to the device architecture, from the wearability to mechanical stresses, and from the environmental compatibility to the end‐use management. Herein, the performance requirements of fiber‐shaped electronics are reviewed considering the characteristics of single electronic fibers and their assemblies in smart clothing. Broadly, this article includes i) processing strategies of electronic fibers with required properties from precursor to material, ii) the state‐of‐art of current fiber‐shaped electronics emphasizing light‐emitting devices, solar cells, sensors, nanogenerators, supercapacitors storage, and chromatic devices, iii) mechanisms involved in the operation of the above devices, iv) limitations of the current materials and device manufacturing techniques to achieve the target performance, and v) the knowledge gap that must be minimized prior to their deployment. Lessons learned from this review with regard to the challenges and prospects for developing fiber‐shaped electronic components are presented as directions for future research on wearable electronics.
Collapse
Affiliation(s)
| | - Haizeng Li
- Institute of Frontier and Interdisciplinarity Science Shandong University Qingdao 266237 China
| | - Francesco Di Giacomo
- Centre for Hybrid and Organic Solar Energy (CHOSE) Department of Electronic Engineering University of Rome Tor Vergata Rome 00133 Italy
| | - Tianyi Zhang
- Department of Chemistry and Centre for Processable Electronics Imperial College London London W120BZ UK
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics Imperial College London London W120BZ UK
| | - Abdulhakem Y. Elezzabi
- Ultrafast Optics and Nanophotonics Laboratory Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta T6G 2V4 Canada
| | - Ankita Mohanty
- School for Advanced Research in Petrochemicals Laboratory for Advanced Research in Polymeric Materials Central Institute of Petrochemicals Engineering and Technology Bhubaneswar Odisha 751024 India
| | - Ananthakumar Ramadoss
- School for Advanced Research in Petrochemicals Laboratory for Advanced Research in Polymeric Materials Central Institute of Petrochemicals Engineering and Technology Bhubaneswar Odisha 751024 India
| | - JinKiong Ling
- Nanostructured Renewable Energy Material Laboratory Faculty of Industrial Sciences and Technology Universiti Malaysia Pahang Pahang Darul Makmur Kuantan 26300 Malaysia
| | - Anastasia Soultati
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research Demokritos Agia Paraskevi Attica 15341 Greece
| | - Marinos Tountas
- Department of Electrical and Computer Engineering Hellenic Mediterranean University Estavromenos Heraklion Crete GR‐71410 Greece
| | | | - Panagiotis Argitis
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research Demokritos Agia Paraskevi Attica 15341 Greece
| | - Rajan Jose
- Nanostructured Renewable Energy Material Laboratory Faculty of Industrial Sciences and Technology Universiti Malaysia Pahang Pahang Darul Makmur Kuantan 26300 Malaysia
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17 Sion CH‐1951 Switzerland
| | - Abd Rashid Bin Mohd Yusoff
- Department of Chemical Engineering Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 37673 Republic of Korea
| | - Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research Demokritos Agia Paraskevi Attica 15341 Greece
| |
Collapse
|
41
|
Zhang X, Chen P, Zhao Y, Liu M, Xiao Z. High-Performance Self-Healing Polyurethane Binder Based on Aromatic Disulfide Bonds and Hydrogen Bonds for the Sulfur Cathode of Lithium–Sulfur Batteries. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiang Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Peng Chen
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Institute of Flexible Electronics Technology of THU, Jiaxing 314000, China
| | - Ying Zhao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingliang Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhenggang Xiao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
42
|
Peng H, Qin YT, Feng YS, He XW, Li WY, Zhang YK. Phosphate-Degradable Nanoparticles Based on Metal-Organic Frameworks for Chemo-Starvation-Chemodynamic Synergistic Antitumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37713-37723. [PMID: 34340302 DOI: 10.1021/acsami.1c10816] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemodynamic therapy (CDT) was regarded as a promising approach for tumor treatment. However, owing to the insufficient amount of endogenous hydrogen peroxide (H2O2) in tumor cells, the efficacy of CDT was limited. In this study, we designed phosphate-responsive nanoparticles (denoted as MGDFT NPs) based on metal-organic frameworks, which were simultaneously loaded with drug doxorubicin (DOX) and glucose oxidases (GOx). The decorated GOx could act as a catalytic nanomedicine for the response to the abundant glucose in the tumor microenvironment, generating a great deal of H2O2, which would enhance the Fenton reaction and produce toxic hydroxyl radicals (·OH). Meanwhile, the growth of tumors would also be inhibited by overconsuming the intratumoral glucose, which was the "fuel" for cell proliferation. When the nanoparticles entered into tumor cells, a high concentration of phosphate induced structure collapse, releasing the loaded DOX for chemotherapy. Furthermore, the decoration of target agents endowed the nanoparticles with favorable target ability to specific tumor cells and mitochondria. Consequently, the designed MGDFT NPs displayed desirable synergistic therapeutic effects via combining chemotherapy, starvation therapy, and enhanced Fenton reaction, facilitating the development of multimodal precise antitumor therapy.
Collapse
Affiliation(s)
- Hui Peng
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ya-Ting Qin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Sheng Feng
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xi-Wen He
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wen-You Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Kui Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
- National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
43
|
Wu L, Huang S, Dong W, Li Y, Wang Z, Mohamed HSH, Li Y, Su BL. Alkoxide hydrolysis in-situ constructing robust trimanganese tetraoxide/graphene composite for high-performance lithium storage. J Colloid Interface Sci 2021; 594:531-539. [PMID: 33774409 DOI: 10.1016/j.jcis.2021.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 11/16/2022]
Abstract
Herein we develop a novel and effective alkoxide hydrolysis approach to in-situ construct the trimanganese tetraoxide (Mn3O4)/graphene nanostructured composite as high-performance anode material for lithium-ion batteries (LIBs). This is the first report on the synthesis of Mn3O4/graphene composite via a facile hydrolysis of the manganese alkoxide (Mn-alkoxide)/graphene precursor. Before hydrolysis, two dimensional (2D) Mn-alkoxide nanoplates are closely adhered to 2D graphene nanosheets via Mn-O chemical bonding. After hydrolysis, the Mn-alkoxide in-situ converts to Mn3O4, while the Mn-O bond is preserved. This leads to a robust Mn3O4/graphene hybrid architecture with 15 nm Mn3O4 nanocrystals homogeneously anchoring on graphene nanosheets. This not only prevents the Mn3O4 nanocrystals agglomeration but also inversely mitigates the graphene nanosheets restacking. Moreover, the flexible and conductive graphene nanosheets can accommodate the volume change. This maintains the structural and electrical integrity of the Mn3O4/graphene electrode during the cycling process. As a result, the Mn3O4/graphene composite displays superior lithium storage performance with high reversible capacity (741 mAh g-1 at 100 mA g-1), excellent rate capability (403 mAh g-1 at 1000 mA g-1) and long cycle life (527 mAg g-1 after 300 cycles at 500 mA g-1). The electrochemical performance highlights the importance of rational design nanocrystals anchoring on graphene nanosheets for high-performance LIBs application.
Collapse
Affiliation(s)
- Liang Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, Hubei, China
| | - Shaozhuan Huang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central University for Nationalities, 182 Minyuan Road, Wuhan, Hubei 430074, China.
| | - Wenda Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, Hubei, China
| | - Yan Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central University for Nationalities, 182 Minyuan Road, Wuhan, Hubei 430074, China
| | - Zhouhao Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central University for Nationalities, 182 Minyuan Road, Wuhan, Hubei 430074, China
| | - Hemdan S H Mohamed
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, Hubei, China; Physics Department, Faculty of Science, Fayoum University, El Gomhoria Street, 63514 Fayoum, Egypt
| | - Yu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, Hubei, China.
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, Hubei, China; Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, Namur B-5000, Belgium.
| |
Collapse
|
44
|
Sun C, Sun L, Fan K, Shi Y, Gu J, Lin Y, Hu J, Zhang Y. A hollow Co 9S 8 rod-acidified CNT-NiCoLDH composite providing excellent electrochemical performance in asymmetric supercapacitors. Dalton Trans 2021; 50:9283-9292. [PMID: 34227633 DOI: 10.1039/d1dt01217g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co9S8 and transition metal hydroxides are both potential pseudo-capacitance electrode materials for supercapacitors. Co9S8 has a large specific capacitance and electrochemical activity, and transition metal hydroxides have the advantages of high capacitance and redox activity due to their multiple valence metals and open layered structure. In this study, Co9S8 and NiCoLDH are used to form a Co9S8-aCNT-NiCoLDH composite electrode material by twining acidified carbon nanotubes (aCNTs) around hollow Co9S8 rods and then compounding nickel cobalt hydroxide (NiCoLDH) on the outside. aCNTs provide more electronic channels, which bring more active electrochemical reactions and absorb the volume expansion of Co9S8. The hollow Co9S8 rods and flower-like NiCoLDH structures ensure that the electrode has a highly open structure, which increases the contact area with the electrolyte and is beneficial for ion transport. The outer NiCoLDH can also reduce the volume expansion of Co9S8. These advantages ensure the high specific capacitance and rate performance of the Co9S8-aCNT-NiCoLDH electrode material. Co9S8-aCNT-NiCoLDH was used as the positive material to fabricate asymmetric supercapacitors with attractive energy density and power density, which further proved its excellent electrochemical performance.
Collapse
Affiliation(s)
- Chao Sun
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, PR China.
| | - Li Sun
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, PR China.
| | - Kaifeng Fan
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, PR China.
| | - Yan Shi
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, PR China.
| | - Jialin Gu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, PR China.
| | - Yifan Lin
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, PR China.
| | - Jingjing Hu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, PR China.
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, PR China.
| |
Collapse
|
45
|
Wang T, Li K, Le Q, Zhu S, Guo X, Jiang D, Zhang Y. Tuning parallel manganese dioxide to hollow parallel hydroxyl oxidize iron replicas for high-performance asymmetric supercapacitors. J Colloid Interface Sci 2021; 594:812-823. [DOI: 10.1016/j.jcis.2021.03.075] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/27/2021] [Accepted: 03/13/2021] [Indexed: 02/07/2023]
|
46
|
|
47
|
Zhu Z, Gao F, Zhang Z, Zhuang Q, Yu H, Huang Y, Liu Q, Fu M. Synthesis of the cathode and anode materials from discarded surgical masks for high-performance asymmetric supercapacitors. J Colloid Interface Sci 2021; 603:157-164. [PMID: 34186393 DOI: 10.1016/j.jcis.2021.06.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/13/2023]
Abstract
Advanced carbon-based electrode materials derived from wastes are essential to high-performance supercapacitors due to their abundance and sustainability. In this work, we fabricate novel cathodes and anodes based on discarded surgicalmask-derived carbon (DSM-C). Discarded surgicalmasks are good candidates for carbon-based electrode materials due to their unique fibrous structure and simple composition compared to conventional biomass sources. Benefiting from the excellent electrical conductivity of DSM-C and abundant redox reactions from nickel oxide (NiO), the electrochemical performances of NiO/DSM-C composites have been greatly improved. Specifically, the DSM-C and NiO/DSM-C electrodes show high specific capacitances of 240 F g-1 and 496 F g-1 at 1 A g-1 respectively, and excellent rate capability. Moreover,asymmetric supercapacitors (ASCs) are assembled using DSM-C and NiO/DSM-C as anodes and cathodes, respectively. They deliver a high energy density of 57 Wh kg-1 at a power density of 702 W kg-1, accompanied by superior cycling stability (98.5% capacitance retention after 10,000 cycles). This work shows prospective applications of DSM-C as an electrode material for energy storage systems.
Collapse
Affiliation(s)
- Zitong Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Fan Gao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhihao Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qingru Zhuang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hao Yu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yongqing Huang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Min Fu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
48
|
Xue J, Zhou R, Chang J, Dai H, Yu C, Zhou J, Sun G, Huang W. Site-Selective Transformation for Preparing Tripod-like NiCo-Sulfides@Carbon Boosts Enhanced Areal Capacity and Cycling Reliability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25316-25324. [PMID: 34014647 DOI: 10.1021/acsami.1c05702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Flexible power supply systems for future wearable electronics desperately require high areal capacity (Ca) and robust cycling reliability due to the limited surface area of the human body. Transition metal sulfides are preferred as cathode materials for their improved conductivity and rich redox centers, yet their practical applications are severely hindered by the sluggish charge transport kinetics and unavoidable capacity decay due to the phase transformation during charge/discharge processes. Herein, we develop a site-selective transformation strategy for preparing tripod-like NiCo-sulfides@carbon (T-NCS@C) arrays on carbon cloth. The mass loading of active materials is balanced with charge (electron and ion) transport efficiency. The optimized T-NCS@C delivers a superior Ca of 494 μA h/cm2 (corresponding to 235 mA h/g) at 3 mA/cm2. Due to the protection of the carbon layer that is derived from transformed metal-organic framework (MOF) sheath, the T-NCS@C displays excellent stability with 92% retention over 5000 charge/discharge cycles. The flexible full cell adopting Fe2O3 as the anode and T-NCS@C as the cathode exhibits an improved Ea (areal energy density) of 389 μW h/cm2 at a Pa (areal power density) of 4.22 mW/cm2 together with robust cycling reliability.
Collapse
Affiliation(s)
- Jialu Xue
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Ruicong Zhou
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Jin Chang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Henghan Dai
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Chenyang Yu
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Jinyuan Zhou
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Gengzhi Sun
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an 710072, P. R. China
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, P. R. China
| | - Wei Huang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an 710072, P. R. China
| |
Collapse
|
49
|
Li Q, Hu E, Yu K, Lu M, Xie R, Lu F, Lu B, Bao R, Lan G. Magnetic field-mediated Janus particles with sustained driving capability for severe bleeding control in perforating and inflected wounds. Bioact Mater 2021; 6:4625-4639. [PMID: 34095621 PMCID: PMC8141897 DOI: 10.1016/j.bioactmat.2021.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022] Open
Abstract
Severe bleeding in perforating and inflected wounds with forky cavities or fine voids encountered during prehospital treatments and surgical procedures is a complex challenge. Therefore, we present a novel hemostatic strategy based on magnetic field-mediated guidance. The biphasic Janus magnetic particle (MSS@Fe2O3-T) comprised aggregates of α-Fe2O3 nanoparticles (Fe2O3 NPs) as the motion actuator, negatively modified microporous starch (MSS) as the base hemostatic substrate, and thrombin as the loaded hemostatic drug. Before application, the particles were first wrapped using NaHCO3 and then doped with protonated tranexamic acid (TXA-NH3+), which ensured their high self-dispersibility in liquids. During application, the particles promptly self-diffused in blood by bubble propulsion and travelled to deep bleeding sites against reverse rushing blood flow under magnetic guidance. In vivo tests confirmed the superior hemostatic performance of the particles in perforating and inflected wounds (“V”-shaped femoral artery and “J”-shaped liver bleeding models). The present strategy, for the first time, extends the range of magnetically guided drug carriers to address the challenges in the hemorrhage control of perforating and inflected wounds.
A new Janus hemostat was developed for treating severe bleeding. The “J” shape bleeding model was proposed for hemostatic test. Magnetic field-mediated driving capacity was employed for hemostasis. Explosive self-dispersibility endowed to the hemostat largely enhanced the bleeding control capacity.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Enling Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Kun Yu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Mengxing Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Fei Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Bitao Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Rong Bao
- The Ninth People's Hospital of Chongqing, No. 69 Jialing Village, BeiBei District, Chongqing, 400715, China
| | - Guangqian Lan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| |
Collapse
|
50
|
Moatasim M, Wang Z, Xie Y, Huang H, Chen N, Wang Y, Zhao H, Zhang H, Yang W. Solving Gravimetric-Volumetric Capacitive Paradox of 2D Materials through Dual-Functional Chemical Bonding-Induced Self-Constructing Graphene-MXene Monoliths. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6339-6348. [PMID: 33502153 DOI: 10.1021/acsami.0c21257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High electrical conductivity and all-open microstructure characteristics intrinsically endow both graphene and MXenes with superior electrochemical energy storage capability. However, the above two-dimensional (2D) thicker electrodes (>20 μm) severely dilute their unique rapid electronic-ionic transferring characteristic, posing a paradox of high gravimetric and high volumetric capacitive properties due to massively excessive macropores or an unduly restacked issue. Herein, we elaborately construct novel monolithic NH2-graphene and Ti3C2Tx MXene (NG@MX) composites through dual-functional induced self-assembly with the help of both covalent and hydrogen bonding interactions. Notably, much thicker monolithic NG@MX electrodes (>90 μm) fabricated by a conventional roll-coating method without any further compaction treatment can simultaneously deliver two times gravimetric (gra.) and volumetric (vol.) performance than those of pure graphene (in vol.) or MXene (in gra.) materials. Moreover, monolithic NG@MX-based supercapacitors can remarkably present two times energy density as that of graphene and four times as MXene, respectively. Such greatly enhanced electrochemical properties are closely related to the appropriate equilibrium of the volumetric density and the open structure, which can effectively guarantee the rapid transfer of both electrons and ions in the thick monolithic NG@MX electrodes. Undoubtedly, dual-functional chemical bonding-induced self-constructing NG@MX monoliths efficiently solve the long-existing gra. and vol. capacitive paradox of the thicker 2D materials used in supercapacitors, which will guide the design of high-performance capacitive materials and promote their practical application in electrochemical energy storage.
Collapse
Affiliation(s)
- Marwa Moatasim
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Zixing Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, China
| | - Yanting Xie
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Haichao Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Ningjun Chen
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Yuchen Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Haibo Zhao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Haitao Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
- State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P.R. China
| |
Collapse
|