1
|
Lee HC, Kim J, Yang HJ, Yu J, Bae JH. Electrochemical Reactions Affected by Electric Double Layer Overlap in Conducting Nanopores. Anal Chem 2024; 96:18745-18753. [PMID: 39546329 DOI: 10.1021/acs.analchem.4c03956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
When a potential is applied to an electrode immersed in an electrolyte solution, ions with opposite charges accumulate around the electrode, forming an electrical double layer (EDL). Unlike flat electrodes, nanoporous electrodes with pore sizes comparable to the EDL thickness experience overlapping EDLs, altering the electrochemically effective surface area. Although previous research has primarily examined the ion charging dynamics and EDL formation in nanoporous electrodes, the impact of EDL overlap on Faraday reactions remains underexplored. In this study, we examined the influence of EDL overlap on electrochemical reactions within nanoporous electrodes using chronoamperometry and DC and AC voltammetry. We used the electrolyte concentration, measurement duration, overpotential, and electrode material as variables to determine the relationship between the extent of EDL overlap and the electrochemical reaction. The electrolyte concentration-dependent electrochemical reaction due to the EDL overlap was more pronounced for electrodes with faster potential changes, shorter measurement times, lower overpotentials, and slower catalytic activity. This is a unique nanoporous electrochemical phenomenon that is not observed on flat electrodes. These findings provide insight into the utilization of nanoporous electrodes in catalytic and sensor applications.
Collapse
Affiliation(s)
- Hyo Chan Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jinju Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun Ju Yang
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Junhee Yu
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Je Hyun Bae
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Xu H, Zhang J, Eikerling M, Huang J. Pure Water Splitting Driven by Overlapping Electric Double Layers. J Am Chem Soc 2024; 146:19720-19727. [PMID: 38985952 PMCID: PMC11273347 DOI: 10.1021/jacs.4c01070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
In pursuit of a sustainable future powered by renewable energy, hydrogen production through water splitting should achieve high energy efficiency with economical materials. Here, we present a nanofluidic electrolyzer that leverages overlapping cathode and anode electric double layers (EDLs) to drive the splitting of pure water. Convective flow is introduced between the nanogap electrodes to suppress the crossover of generated gases. The strong electric field within the overlapping EDLs enhances ion migration and facilitates the dissociation of water molecules. Acidic and basic environments, which are created in situ at the cathode and anode, respectively, enable the use of nonprecious metal catalysts. All these merits allow the reactor to exhibit a current density of 2.8 A·cm-2 at 1.7 V with a nickel anode. This paves the way toward a new type of water electrolyzer that needs no membrane, no supporting electrolyte, and no precious metal catalysts.
Collapse
Affiliation(s)
- Haosen Xu
- School
of Vehicle and Mobility, State Key Laboratory of Intelligent Green
Vehicle and Mobility, Tsinghua University, 100084 Beijing, China
- IEK-13,
Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Jianbo Zhang
- School
of Vehicle and Mobility, State Key Laboratory of Intelligent Green
Vehicle and Mobility, Tsinghua University, 100084 Beijing, China
| | - Michael Eikerling
- IEK-13,
Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Chair
of Theory and Computation of Energy Materials, Faculty of Georesources
and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
| | - Jun Huang
- IEK-13,
Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Theory
of Electrocatalytic Interfaces, Faculty of Georesources and Materials
Engineering, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
3
|
Reitemeier J, Baek S, Bohn PW. Hydrophobic Gating and Spatial Confinement in Hierarchically Organized Block Copolymer-Nanopore Electrode Arrays for Electrochemical Biosensing of 4-Ethyl Phenol. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39707-39715. [PMID: 37579252 DOI: 10.1021/acsami.3c06709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Hydrophobic gating in biological transport proteins is regulated by stimulus-specific switching between filled and empty nanocavities, endowing them with selective mass transport capabilities. Inspired by these, solid-state nanochannels have been integrated into functional materials for a broad range of applications, such as energy conversion, filtration, and nanoelectronics, and here we extend these to electrochemical biosensors coupled to mass transport control elements. Specifically, we report hierarchically organized structures with block copolymers on tyrosinase-modified two-electrode nanopore electrode arrays (BCP@NEAs) as stimulus-controlled electrochemical biosensors for alkylphenols. A polystyrene-b-poly(4-vinyl)pyridine (PS-b-P4VP) membrane placed atop the NEA endows the system with potential-responsive gating properties, where water transport is spatially and temporarily gated through hydrophobic P4VP nanochannels by the application of appropriate potentials. The reversibility of hydrophobic voltage-gating makes it possible to capture and confine analyte species in the attoliter-volume vestibule of cylindrical nanopore electrodes, enabling redox cycling and yielding enhanced currents with amplification factors >100× when operated in a generator-collector mode. The enzyme-coupled sensing capabilities are demonstrated using nonelectroactive 4-ethyl phenol, exploiting the tyrosinase-catalyzed turnover into reversibly redox-active quinones, then using the quinone-catechol redox reaction to achieve ultrasensitive cycling currents in confined BCP@NEA sensors giving a limit-of-detection of ∼120 nM. The mass transport controlled sensing platform described here is relevant to the development of enzyme-coupled multiplex biosensors for sensitive and selective detection of biomarkers and metabolites in next-generation point-of-care devices.
Collapse
Affiliation(s)
- Julius Reitemeier
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Seol Baek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
4
|
Levey KJ, Edwards MA, White HS, Macpherson JV. Simulation of the cyclic voltammetric response of an outer-sphere redox species with inclusion of electrical double layer structure and ohmic potential drop. Phys Chem Chem Phys 2023; 25:7832-7846. [PMID: 36857676 DOI: 10.1039/d3cp00098b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A finite-element model has been developed to simulate the cyclic voltammetric (CV) response of a planar electrode for a 1e outer-sphere redox process, which fully accounts for cell electrostatics, including ohmic potential drop, ion migration, and the structure of the potential-dependent electric double layer. Both reversible and quasi-reversible redox reactions are treated. The simulations compute the time-dependent electric potential and ion distributions across the entire cell during a voltammetric scan. In this way, it is possible to obtain the interdependent faradaic and non-faradaic contributions to a CV and rigorously include all effects of the electric potential distribution on the rate of electron transfer and the local concentrations of the redox species Oz and Rz-1. Importantly, we demonstrate that the driving force for electron transfer can be different to the applied potential when electrostatic interactions are included. We also show that the concentrations of Oz and Rz-1 at the plane of electron transfer (PET) significantly depart from those predicted by the Nernst equation, even when the system is characterised by fast electron transfer/diffusion control. A mechanistic rationalisation is also presented as to why the electric double layer has a negligible effect on the CV response of such reversible systems. In contrast, for quasi-reversible electron transfer the concentrations of redox species at the PET are shown to play an important role in determining CV wave shape, an effect also dependant on the charge of the redox species and the formal electrode potential of the redox couple. Failure to consider electrostatic effects could lead to incorrect interpretation of electron-transfer kinetics from the CV response. Simulated CVs at scan rates between 0.1 and 1000 V s-1 are found to be in good agreement with experimental data for the reduction of 1.0 mM Ru(NH3)63+ at a 2 mm diameter gold disk electrode in 1.0 M potassium nitrate.
Collapse
Affiliation(s)
- Katherine J Levey
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK. .,Centre for Diamond Science and Technology, University of Warwick, Coventry, CV4 7AL, UK
| | - Martin A Edwards
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Henry S White
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA.
| | - Julie V Macpherson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK. .,Centre for Diamond Science and Technology, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
5
|
Wang L, Wang H, Chen X, Zhou S, Wang Y, Guan X. Chemistry solutions to facilitate nanopore detection and analysis. Biosens Bioelectron 2022; 213:114448. [PMID: 35716643 DOI: 10.1016/j.bios.2022.114448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Characteristic ionic current modulations will be produced in a single molecule manner during the communication of individual molecules with a nanopore. Hence, the information regarding the length, composition, and structure of a molecule can be extracted from deciphering the electrical message. However, until now, achieving a satisfactory resolution for observation and quantification of a target analyte in a complex system remains a nontrivial task. In this review, we summarize the progress and especially the recent advance in utilizing chemistry solutions to facilitate nanopore detection and analysis. The discussed chemistry solutions are classified into several major categories, including covalent/non-covalent chemistry, redox chemistry, displacement chemistry, back titration chemistry, chelation chemistry, hydrolysis-chemistry, and click chemistry. Considering the significant success of using chemical reaction-assisted nanopore sensing strategies to improve sensor sensitivity & selectivity and to study various topics, other non-chemistry based methodologies can undoubtedly be employed by nanopore sensors to explore new applications in the interdisciplinary area of chemistry, biology, materials, and nanotechnology.
Collapse
Affiliation(s)
- Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Han Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xiaohan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Shuo Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| |
Collapse
|
6
|
Jaugstetter M, Blanc N, Kratz M, Tschulik K. Electrochemistry under confinement. Chem Soc Rev 2022; 51:2491-2543. [PMID: 35274639 DOI: 10.1039/d1cs00789k] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although the term 'confinement' regularly appears in electrochemical literature, elevated by continuous progression in the research of nanomaterials and nanostructures, up until today the various aspects of confinement considered in electrochemistry are rather scattered individual contributions outside the established disciplines in this field. Thanks to a number of highly original publications and the growing appreciation of confinement as an overarching link between different exciting new research strategies, 'electrochemistry under confinement' is the process of forming a research discipline of its own. To aid the development a coherent terminology and joint basic concepts, as crucial factors for this transformation, this review provides an overview on the different effects on electrochemical processes known to date that can be caused by confinement. It also suggests where boundaries to other effects, such as nano-effects could be drawn. To conceptualize the vast amount of research activities revolving around the main concepts of confinement, we define six types of confinement and select two of them to discuss the state of the art and anticipated future developments in more detail. The first type concerns nanochannel environments and their applications for electrodeposition and for electrochemical sensing. The second type covers the rather newly emerging field of colloidal single entity confinement in electrochemistry. In these contexts, we will for instance address the influence of confinement on the mass transport and electric field distributions and will link the associated changes in local species concentration or in the local driving force to altered reaction kinetics and product selectivity. Highlighting pioneering works and exciting recent developments, this educational review does not only aim at surveying and categorizing the state-of-the-art, but seeks to specifically point out future perspectives in the field of confinement-controlled electrochemistry.
Collapse
Affiliation(s)
- Maximilian Jaugstetter
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| | - Niclas Blanc
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| | - Markus Kratz
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| | - Kristina Tschulik
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
7
|
A direct comparison of 2D versus 3D diffusion analysis at nanowire electrodes: A finite element analysis and experimental study. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Kwon SR, Baek S, Bohn PW. Potential-induced wetting and dewetting in pH-responsive block copolymer membranes for mass transport control. Faraday Discuss 2021; 233:283-294. [PMID: 34904977 DOI: 10.1039/d1fd00048a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Wetting and dewetting behavior in channel-confined hydrophobic volumes is used in biological membranes to effect selective ion/molecular transport. Artificial biomimetic hydrophobic nanopores have been devised utilizing wetting and dewetting, however, tunable mass transport control utilizing multiple transport modes is required for applications such as controllable release/transport, water separation/purification and energy conversion. Here, we investigate the potential-induced wetting and dewetting behavior in a pH-responsive membrane composed of a polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) when fabricated as a hierarchically-organized sandwich structure on a nanopore electrode array (NEA), i.e. BCP@NEA. At pH < pKa(P4VP) (pKa ∼ 4.8), the BCP acts as an anion-exchange membrane due to the hydrophilic, protonated P4VP cylindrical nanodomains, but at pH > pKa(P4VP), the P4VP domains exhibit charge-neutral, hydrophobic and collapsed structures, blocking mass transport via the hydrophobic membrane. However, when originally prepared in a dewetted condition, mass transport in the BCP membrane may be switched on if sufficiently negative potentials are applied to the BCP@NEA architecture. When the hydrophobic BCP membrane is introduced on top of 2-electrode-embedded nanopore arrays, electrolyte solution in the nanopores is introduced, then isolated, by exploiting the potential-induced wetting and dewetting transitions in the BCP membrane. The potential-induced wetting/dewetting transition and the effect on cyclic voltammetry in the BCP@NEA structures is characterized as a function of the potential, pH and ionic strength. In addition, chronoamperometry and redox cycling experiments are used to further characterize the potential response. The multi-modal mass transport system proposed in this work will be useful for ultrasensitive sensing and single-molecule studies, which require long-time monitoring to explore reaction dynamics as well as molecular heterogeneity in nanoconfined volumes.
Collapse
Affiliation(s)
- Seung-Ryong Kwon
- Department of Chemistry, Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Seol Baek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, 46556, USA.
| |
Collapse
|
9
|
Do H, Kwon SR, Baek S, Madukoma CS, Smiley MK, Dietrich LE, Shrout JD, Bohn PW. Redox cycling-based detection of phenazine metabolites secreted from Pseudomonas aeruginosa in nanopore electrode arrays. Analyst 2021; 146:1346-1354. [PMID: 33393560 PMCID: PMC7937416 DOI: 10.1039/d0an02022b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa) produces several redox-active phenazine metabolites, including pyocyanin (PYO) and phenazine-1-carboxamide (PCN), which are electron carrier molecules that also aid in virulence. In particular, PYO is an exclusive metabolite produced by P. aeruginosa, which acts as a virulence factor in hospital-acquired infections and is therefore a good biomarker for identifying early stage colonization by this pathogen. Here, we describe the use of nanopore electrode arrays (NEAs) exhibiting metal-insulator-metal ring electrode architectures for enhanced detection of these phenazine metabolites. The size of the nanopores allows phenazine metabolites to freely diffuse into the interior and access the working electrodes, while the bacteria are excluded. Consequently, highly efficient redox cycling reactions in the NEAs can be accessed by free diffusion unhindered by the presence of bacteria. This strategy yields low limits of detection, i.e. 10.5 and 20.7 nM for PYO and PCN, respectively, values far below single molecule pore occupancy, e.g. at 10.5 nM 〈npore〉∼ 0.082 per nanopore - a limit which reflects the extraordinary signal amplification in the NEAs. Furthermore, experiments that compared results from minimal medium and rich medium show that P. aeruginosa produces the same types of phenazine metabolites even though growth rates and phenazine production patterns differ in these two media. The NEA measurement strategy developed here should be useful as a diagnostic for pathogens generally and for understanding metabolism in clinically important microbial communities.
Collapse
Affiliation(s)
- Hyein Do
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Baek S, Kwon SR, Fu K, Bohn PW. Ion Gating in Nanopore Electrode Arrays with Hierarchically Organized pH-Responsive Block Copolymer Membranes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55116-55124. [PMID: 33222437 DOI: 10.1021/acsami.0c12926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inspired by biological ion channels, artificial nanopore-based architectures have been developed for smart ion/molecular transport control with potential applications to iontronics and energy conversion. Advances in nanofabrication technology enable simple, versatile construction methods, and post-fabrication functionalization delivers nanochannels with unique ion transport-control attributes. Here, we characterize a pH-responsive, charge-selective dual-gating block copolymer (BCP) membrane composed of polystyrene-b-poly(4-vinylpyridine) (PS48400-b-P4VP21300), capable of self-organizing into highly ordered nanocylindrical domains. Because the PS-b-P4VP membrane exhibits pH-dependent structural transitions, it is suitable for designing intelligent pH-gated biomimetic channels, for example, exhibiting on-off transport switching at pH values near the pKa of P4VP with excellent anion permselectivity at pH < pKa. Introducing the BCP membrane onto nanopore electrode arrays (BCP@NEAs) allows the BCP to serve as a pH-responsive gate controlling ion transfer into the NEA nanopores. Such selectively transported and confined ions are detected by using a 100 nm gap dual-ring nanoelectrode structure capable of enhancing current output by efficient redox cycling with an amplification factor >102. In addition, BCP@NEAs exhibit extraordinary pH-gated ion selectivity, resulting in a 3380-fold current difference between anion and cation probes at pH 3.0. This hierarchically organized BCP-gated NEA system can serve as a template for the development of other stimulus-responsive ion gates, for example, those based on temperature and ligand gating, thus exploiting the intrinsic advantages of NEAs, such as enhanced sensitivity based on redox cycling, which may lead to technological applications such as engineered biosensors and iontronic devices.
Collapse
Affiliation(s)
- Seol Baek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Seung-Ryong Kwon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kaiyu Fu
- Department of Radiology, Stanford University, Stanford, California 94306, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94306, United States
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
11
|
Kwon SR, Baek S, Fu K, Bohn PW. Electrowetting-Mediated Transport to Produce Electrochemical Transistor Action in Nanopore Electrode Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907249. [PMID: 32270930 DOI: 10.1002/smll.201907249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Understanding water behavior in confined volumes is important in applications ranging from water purification to healthcare devices. Especially relevant are wetting and dewetting phenomena which can be switched by external stimuli, such as light and electric fields. Here, these behaviors are exploited for electrochemical processing by voltage-directed ion transport in nanochannels contained within nanopore arrays in which each nanopore presents three electrodes. The top and middle electrodes (TE and ME) are in direct contact with the nanopore volume, but the bottom electrode (BE) is buried beneath a 70 nm silicon nitride (SiNx ) insulating layer. Electrochemical transistor operation is realized when small, defect-mediated channels are opened in the SiNx . These defect channels exhibit voltage-driven wetting that mediates the mass transport of redox species to/from the BE. When BE is held at a potential maintaining the defect channels in the wetted state, setting the potential of ME at either positive or negative overpotential results in strong electrochemical rectification with rectification factors up to 440. By directing the voltage-induced electrowetting of defect channels, these three-electrode nanopore structures can achieve precise gating and ion/molecule separation, and, as such, may be useful for applications such as water purification and drug delivery.
Collapse
Affiliation(s)
- Seung-Ryong Kwon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Seol Baek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kaiyu Fu
- Department of Radiology and Department of Electrical Engineering, Stanford University, Stanford, CA, 94306, USA
| | - Paul W Bohn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
12
|
Fu K, Kwon SR, Han D, Bohn PW. Single Entity Electrochemistry in Nanopore Electrode Arrays: Ion Transport Meets Electron Transfer in Confined Geometries. Acc Chem Res 2020; 53:719-728. [PMID: 31990518 PMCID: PMC8020881 DOI: 10.1021/acs.accounts.9b00543] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Electrochemical measurements conducted in confined volumes provide a powerful and direct means to address scientific questions at the nexus of nanoscience, biotechnology, and chemical analysis. How are electron transfer and ion transport coupled in confined volumes and how does understanding them require moving beyond macroscopic theories? Also, how do these coupled processes impact electrochemical detection and processing? We address these questions by studying a special type of confined-volume architecture, the nanopore electrode array, or NEA, which is designed to be commensurate in size with physical scaling lengths, such as the Debye length, a concordance that offers performance characteristics not available in larger scale structures.The experiments described here depend critically on carefully constructed nanoscale architectures that can usefully control molecular transport and electrochemical reactivity. We begin by considering the experimental constraints that guide the design and fabrication of zero-dimensional nanopore arrays with multiple embedded electrodes. These zero-dimensional structures are nearly ideal for exploring how permselectivity and unscreened ion migration can be combined to amplify signals and improve selectivity by enabling highly efficient redox cycling. Our studies also highlight the benefits of arrays, in that molecules escaping from a single nanopore are efficiently captured by neighboring pores and returned to the population of active redox species being measured, benefits that arise from coupling ion accumulation and migration. These tools for manipulating redox species are well-positioned to explore single molecule and single particle electron transfer events through spectroelectrochemistry, studies which are enabled by the electrochemical zero-mode waveguide (ZMW), a special hybrid nanophotonic/nanoelectronic architecture in which the lower ring electrode of an NEA nanopore functions both as a working electrode to initiate electron transfer reactions and as the optical cladding layer of a ZMW. While the work described here is largely exploratory and fundamental, we believe that the development of NEAs will enable important applications that emerge directly from the unique coupled transport and electron-transfer capabilities of NEAs, including in situ molecular separation and detection with external stimuli, redox-based electrochemical rectification in individually encapsulated nanopores, and coupled sorters and analyzers for nanoparticles.
Collapse
Affiliation(s)
- Kaiyu Fu
- Department of Radiology, Stanford University, Stanford, CA, 94306
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94306
| | - Seung-Ryong Kwon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Donghoon Han
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662 Republic of Korea
| | - Paul W. Bohn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|