1
|
Das S, Paul S, Datta A. Exploring piezoelectric and piezophototronic properties of nanostructured LN-ZnSnS 3 for photoresponsive vibrational energy harvesting. NANOSCALE 2025. [PMID: 40009054 DOI: 10.1039/d4nr05246c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Piezoelectric energy harvesters have for some time been an advanced choice for self-powered electronics. While oxide-based piezoelectric nanomaterials are well studied for their quality mechanical energy harvesting potential, recent interest in developing multifunctional nanomaterials for harvesting simultaneous ferroelectric/piezoelectric and light energy for photodetectors, photovoltaics and piezophototronics has impelled the search for newer semiconducting dipolar materials. In this respect, LiNbO3 type-ZnSnS3 (LN-ZTS) is predicted to have low optical band gap energy and to possess a considerably expanded hexagonal R3c lattice with high ferroelectricity. Although it has been stabilised in thin-film form, the exclusive synthesis of LN-ZTS nanocrystals has not been reported. In this article, we report a one-step synthesis for R3c hexagonal LN-type ZnSnS3 (ZTS) nanoflakes and show that they could be highly desirable candidates for light-responsive mechanical energy harvesting via an impressive piezophototronic effect. A piezoelectric coefficient (d33) of ∼19 pm V-1 was measured using piezoresponse force microscopy and a considerable zero-bias photoconduction current was observed, which was utilized to harvest an output power of ∼0.13 μW cm-2 from an induced light intensity of 100 mW cm-2 under a mechanical impact of 17 N and 3 Hz. These findings establish a previously unreported ternary sulfide piezoelectric nanostructured material as potential candidate for designing piezophototronic devices by coupling optical functionalities and piezoelectric responses.
Collapse
Affiliation(s)
- Surajit Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Swadesh Paul
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Anuja Datta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
- Technical Research Centre, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
2
|
Wang Y, Li F, Peng W, Xie W, Zhao X, He Y. Piezophototronic Effect Enhanced Flexible Tunneling Devices by Separating the Photosensitive Layer and the Piezoelectric Modulation Layer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44278-44287. [PMID: 39133472 DOI: 10.1021/acsami.4c08673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The piezo-phototronic effect uses the piezoelectric potential/piezoelectric charge generated by the piezoelectric semiconductor material to regulate the energy band structure and photogenerated carrier behavior at the interface/junction, thereby modulating the device's performance. The positive/negative piezoelectric charges generated at the interface of piezoelectric semiconductors can reduce the electron/hole barriers and thus enhance the transport of photogenerated carriers. However, electron/hole potential wells are formed when the electron/hole potential barrier caused by positive/negative piezoelectric charges is lowered too much, hindering the transport of photogenerated carriers. It is difficult to balance the relationship between potential barriers and potential wells while introducing the piezo-phototronic effect. In this work, a physical mechanism by separating the photosensitive layer and the piezoelectric modulation layer is proposed to deal with the above-mentioned issue in flexible tunneling devices. The piezoelectric modulation layer is solely used to adjust the electron/hole barriers, while the photosensitive layer is used to absorb photons and generate photogenerated carriers. This avoids the limitation on the transport of photogenerated carriers caused by potential wells in the piezoelectric semiconductor, thereby significantly increasing the adjustable range of the barriers. Experimental results show that the photoresponsivity of the flexible p-Si/Al2O3/n-ZnO tunneling device is optimized from 5.5 A/W to 35.8 A/W by the piezo-phototronic effect after separating the piezoelectric charges and photogenerated carriers. In addition, finite element analysis is used to simulate the influence of piezoelectric charges on the energy bands to corroborate the accuracy of the theoretical mechanism and experimental results. This work not only presents an optoelectronic device with excellent performance but also offers novel guidance for improving the performance of optoelectronic devices using the piezo-phototronic effect.
Collapse
Affiliation(s)
- Yitong Wang
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an, Shaanxi 710049, China
| | - Fangpei Li
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an, Shaanxi 710049, China
| | - Wenbo Peng
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an, Shaanxi 710049, China
| | - Wanli Xie
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an, Shaanxi 710049, China
| | - Xiaolong Zhao
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an, Shaanxi 710049, China
| | - Yongning He
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an, Shaanxi 710049, China
| |
Collapse
|
3
|
Rabhi S, Hameed TA, Mayarambakam S, Hossain MK, Sekar K. The impact of CBz-PAI interlayer in various HTL-based flexible perovskite solar cells: A drift-diffusion numerical study. Heliyon 2024; 10:e31138. [PMID: 38778989 PMCID: PMC11108980 DOI: 10.1016/j.heliyon.2024.e31138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
In perovskite solar cells (PSCs), the charge carrier recombination obstacles mainly occur at the ETL/perovskite and HTL/perovskite interfaces, which play a decisive role in the solar cell performance. Therefore, this study aims to enhance the flexible PSC (FPSC) efficiency by adding the newly designed CBz-PAI-interlayer (simply CBz-PAI-IL) at the perovskite/HTL interface. In addition, substantial work has been carried out on five different HTLs (Se/Te-Cu2O, CuGaO2, V2O5, and CuSCN, including conventional Spiro-OMeTAD as a reference HTL with and without CBz-PAI-IL), using drift-diffusion simulation to find suitable FPSC design to attain the maximum PCE. Interestingly, PET/ITO/AZO/ZnO NWs/FACsPbBrI3/CBz-PAI/Se/Te-Cu2O/Au device architecture demonstrates the highest achievable power conversion efficiency (PCE) of 27.9 %. The findings of this study confirmed that the reference device (without IL) displays a large valence band edge (VBE)/highest occupied molecular orbital (HOMO) energy level misalignment compared to the modified interface device (with CBz-PAI-IL that reduces VBE/HOMO level mismatch) that eases the hole transport, simultaneously, it reduces the charge carrier recombinations at the interface, resulting in diminished Voc losses in the device. Furthermore, the influence of perovskite absorber thickness and defect density, parasitic resistances, and working temperature are systematically examined to govern the superior FPSC efficiency and concurrently understand the device physics.
Collapse
Affiliation(s)
- Selma Rabhi
- Laboratory of Semiconductors Material and Metallic Oxides, USTHB, Bab-Ezzouar, 16111, Algiers, Algeria
- Dr. Yahia Fares University of Medea, Medea 26000, Algeria
| | - Talaat A. Hameed
- Solid-State Physics Department, Physics Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Sasikumar Mayarambakam
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21210, USA
| | - M. Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - Karthick Sekar
- Aix-Marseille Université, CNRS, Institut Matériaux Microélectronique Nanosciences de Provence, Faculté de Saint Jérôme, 13397 Marseille Cedex 20, France
| |
Collapse
|
4
|
Sekar K, Doineau R, Mayarambakam S, Schmaltz B, Poulin-Vittrant G. Control of ZnO nanowires growth in flexible perovskite solar cells: A mini-review. Heliyon 2024; 10:e24706. [PMID: 38322830 PMCID: PMC10844130 DOI: 10.1016/j.heliyon.2024.e24706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Due to their excellent properties, Zinc oxide nanowires (ZnO NW) have been attractive and considered as a promising electron-transporting layer (ETL) in flexible Perovskite Solar Cells (FPSCs). Since the first report on ZnO NWs-based FPSCs giving 2.6 % power conversion efficiency (in 2013), great improvements have been made, allowing to reach up to∼15 % nowadays. However, some issues still need to be addressed, especially on flexible substrates, to achieve uniform and well-aligned ZnO NWs via low-cost chemical solution techniques. Several parameters, such as the growing method (time, temperature, precursors concentration), addition of seed layer (thickness, roughness, annealing temperature) and substrate (rigid or flexible), play a crucial role in ZnO NWs properties (i.e., length, diameter, density and aspect ratio). In this review, these parameters allowing to control the properties of ZnO NWs, like the growth techniques, utilization of seed layers and the growing method (time or precursors concentration) have been summarized. Then, a particular focus on the ZnO NW's role in FPSCs as well as the use of these results on the development of ZnO NWs-based FPSCs have been highlighted.
Collapse
Affiliation(s)
- Karthick Sekar
- GREMAN UMR 7347, Université de Tours, CNRS, INSA Centre Val de Loire, 37071 Tours, France
| | - Raphaël Doineau
- GREMAN UMR 7347, Université de Tours, CNRS, INSA Centre Val de Loire, 37071 Tours, France
| | | | - Bruno Schmaltz
- PCM2E EA 6299, Université de Tours, Parc de Grandmont, 37200 Tours, France
| | | |
Collapse
|
5
|
Hua Q, Shen G. Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics. Chem Soc Rev 2024; 53:1316-1353. [PMID: 38196334 DOI: 10.1039/d3cs00918a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Flexible/stretchable electronics, which are characterized by their ultrathin design, lightweight structure, and excellent mechanical robustness and conformability, have garnered significant attention due to their unprecedented potential in healthcare, advanced robotics, and human-machine interface technologies. An increasing number of low-dimensional nanostructures with exceptional mechanical, electronic, and/or optical properties are being developed for flexible/stretchable electronics to fulfill the functional and application requirements of information sensing, processing, and interactive loops. Compared to the traditional single-layer format, which has a restricted design space, a monolithic three-dimensional (M3D) integrated device architecture offers greater flexibility and stretchability for electronic devices, achieving a high-level of integration to accommodate the state-of-the-art design targets, such as skin-comfort, miniaturization, and multi-functionality. Low-dimensional nanostructures possess small size, unique characteristics, flexible/elastic adaptability, and effective vertical stacking capability, boosting the advancement of M3D-integrated flexible/stretchable systems. In this review, we provide a summary of the typical low-dimensional nanostructures found in semiconductor, interconnect, and substrate materials, and discuss the design rules of flexible/stretchable devices for intelligent sensing and data processing. Furthermore, artificial sensory systems in 3D integration have been reviewed, highlighting the advancements in flexible/stretchable electronics that are deployed with high-density, energy-efficiency, and multi-functionalities. Finally, we discuss the technical challenges and advanced methodologies involved in the design and optimization of low-dimensional nanostructures, to achieve monolithic 3D-integrated flexible/stretchable multi-sensory systems.
Collapse
Affiliation(s)
- Qilin Hua
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
- Institute of Flexible Electronics, Beijing Institute of Technology, Beijing 102488, China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
- Institute of Flexible Electronics, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
6
|
Liang H, Yang W, Xia J, Gu H, Meng X, Yang G, Fu Y, Wang B, Cai H, Chen Y, Yang S, Liang C. Strain Effects on Flexible Perovskite Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304733. [PMID: 37828594 PMCID: PMC10724416 DOI: 10.1002/advs.202304733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Indexed: 10/14/2023]
Abstract
Flexible perovskite solar cells (f-PSCs) as a promising power source have grabbed surging attention from academia and industry specialists by integrating with different wearable and portable electronics. With the development of low-temperature solution preparation technology and the application of different engineering strategies, the power conversion efficiency of f-PSCs has approached 24%. Due to the inherent properties and application scenarios of f-PSCs, the study of strain in these devices is recognized as one of the key factors in obtaining ideal devices and promoting commercialization. The strains mainly from the change of bond and lattice volume can promote phase transformation, induce decomposition of perovskite film, decrease mechanical stability, etc. However, the effect of strain on the performance of f-PSCs has not been systematically summarized yet. Herein, the sources of strain, evaluation methods, impacts on f-PSCs, and the engineering strategies to modulate strain are summarized. Furthermore, the problems and future challenges in this regard are raised, and solutions and outlooks are offered. This review is dedicated to summarizing and enhancing the research into the strain of f-PSCs to provide some new insights that can further improve the optoelectronic performance and stability of flexible devices.
Collapse
Affiliation(s)
- Hongbo Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Wenhan Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Junmin Xia
- State Key Laboratory of OrganicElectronics and Information DisplaysNanjing University of Posts and TelecommunicationsNanjing210000China
| | - Hao Gu
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauMacau999078P. R. China
| | - Xiangchuan Meng
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of EducationJiangxi Normal UniversityNanchang330000P. R. China
| | - Gege Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Ying Fu
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Bin Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Hairui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of EducationJiangxi Normal UniversityNanchang330000P. R. China
| | - Shengchun Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Chao Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| |
Collapse
|
7
|
Xu Z, Han X, Wu W, Li F, Wang R, Lu H, Lu Q, Ge B, Cheng N, Li X, Yao G, Hong H, Liu K, Pan C. Controlled on-chip fabrication of large-scale perovskite single crystal arrays for high-performance laser and photodetector integration. LIGHT, SCIENCE & APPLICATIONS 2023; 12:67. [PMID: 36882401 PMCID: PMC9992671 DOI: 10.1038/s41377-023-01107-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Metal halide perovskites possess intriguing optoelectronic properties, however, the lack of precise control of on-chip fabrication of the large-scale perovskite single crystal arrays restricts its application in integrated devices. Here, we report a space confinement and antisolvent-assisted crystallization method for the homogeneous perovskite single crystal arrays spanning 100 square centimeter areas. This method enables precise control over the crystal arrays, including different array shapes and resolutions with less than 10%-pixel position variation, tunable pixel dimensions from 2 to 8 μm as well as the in-plane rotation of each pixel. The crystal pixel could serve as a high-quality whispering gallery mode (WGM) microcavity with a quality factor of 2915 and a threshold of 4.14 μJ cm-2. Through directly on-chip fabrication on the patterned electrodes, a vertical structured photodetector array is demonstrated with stable photoswitching behavior and the capability to image the input patterns, indicating the potential application in the integrated systems of this method.
Collapse
Affiliation(s)
- Zhangsheng Xu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Han
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Wenqiang Wu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Fangtao Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Ru Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hui Lu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuchun Lu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Ningyan Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xiaoyi Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Guangjie Yao
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Hao Hong
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Perveen A, Movsesyan A, Abubakar SM, Saeed F, Hussain S, Raza A, Xu Y, Subramanian A, Khan Q, Lei W. In-situ Fabricated and Plasmonic Enhanced MACsPbBr3-Polymer Composite Perovskite Film Based UV Photodetector. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Wang Y, Xie W, Peng W, Li F, He Y. Fundamentals and Applications of ZnO-Nanowire-Based Piezotronics and Piezo-Phototronics. MICROMACHINES 2022; 14:mi14010047. [PMID: 36677109 PMCID: PMC9860666 DOI: 10.3390/mi14010047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/02/2023]
Abstract
The piezotronic effect is a coupling effect of semiconductor and piezoelectric properties. The piezoelectric potential is used to adjust the p-n junction barrier width and Schottky barrier height to control carrier transportation. At present, it has been applied in the fields of sensors, human-machine interaction, and active flexible electronic devices. The piezo-phototronic effect is a three-field coupling effect of semiconductor, photoexcitation, and piezoelectric properties. The piezoelectric potential generated by the applied strain in the piezoelectric semiconductor controls the generation, transport, separation, and recombination of carriers at the metal-semiconductor contact or p-n junction interface, thereby improving optoelectronic devices performance, such as photodetectors, solar cells, and light-emitting diodes (LED). Since then, the piezotronics and piezo-phototronic effects have attracted vast research interest due to their ability to remarkably enhance the performance of electronic and optoelectronic devices. Meanwhile, ZnO has become an ideal material for studying the piezotronic and piezo-phototronic effects due to its simple preparation process and better biocompatibility. In this review, first, the preparation methods and structural characteristics of ZnO nanowires (NWs) with different doping types were summarized. Then, the theoretical basis of the piezotronic effect and its application in the fields of sensors, biochemistry, energy harvesting, and logic operations (based on piezoelectric transistors) were reviewed. Next, the piezo-phototronic effect in the performance of photodetectors, solar cells, and LEDs was also summarized and analyzed. In addition, modulation of the piezotronic and piezo-phototronic effects was compared and summarized for different materials, structural designs, performance characteristics, and working mechanisms' analysis. This comprehensive review provides fundamental theoretical and applied guidance for future research directions in piezotronics and piezo-phototronics for optoelectronic devices and energy harvesting.
Collapse
Affiliation(s)
- Yitong Wang
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Wanli Xie
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Wenbo Peng
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Fangpei Li
- State Key Laboratory of Solidification Processing, Key Laboratory of Radiation Detection Materials and Devices, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yongning He
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| |
Collapse
|
10
|
Huang F, Ge S, Wei R, He J, Ma X, Tao J, Lu Q, Mo X, Wang C, Pan C. Flexible Threshold Switching Based on CsCu 2I 3 with Low Threshold Voltage and High Air Stability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43474-43481. [PMID: 36098632 DOI: 10.1021/acsami.2c09904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Halide perovskites featuring remarkable optoelectronic properties hold great potential for threshold switching devices (TSDs) that are of primary importance to next-generation memristors and neuromorphic computers. However, such devices are still in their infancy due to the unsolved challenges of high threshold voltage, poor stability, and lead-containing features. Herein, a unipolar TSD based on an all-inorganic halide perovskite of CsCu2I3 is demonstrated, exhibiting the fascinating attributes of a low threshold voltage of 0.54 V, a high ON/OFF ratio of 104, robust air stability over 70 days, a steep switching slope of 6.2 mV·decade-1, and lead-free composition. Moreover, the threshold voltage can be further reduced to 0.23 V using UV illumination to reduce the barrier of iodide ion migration. The multilevel threshold switching behavior can be realized through the modulation of either the compliance current or the scan rate. The TSD with mechanical compliance and transparency is also demonstrated. This work enriches TSDs with expanded perovskite materials, boosting the related applications of this emerging class of device families.
Collapse
Affiliation(s)
- Fengchang Huang
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Shuaipeng Ge
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ruilai Wei
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Jiaqi He
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaole Ma
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Juan Tao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qiuchun Lu
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Xiaoming Mo
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Chunfeng Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Sun J, Li T, Dong L, Hua Q, Chang S, Zhong H, Zhang L, Shan C, Pan C. Excitation-dependent perovskite/polymer films for ultraviolet visualization. Sci Bull (Beijing) 2022; 67:1755-1762. [PMID: 36546061 DOI: 10.1016/j.scib.2022.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023]
Abstract
Ultraviolet (UV) visualization has extensive applications in military and civil fields such as security monitoring, space communication, and wearable equipment for health monitoring in the internet of things (IoT). Due to their remarkable optoelectronic features, perovskite materials are regarded as promising candidates for UV light detecting and imaging. Herein, we report for the first time the excitation-dependent perovskite/polymer films with dynamically tunable fluorescence ranging from green to magenta by changing the UV excitation from 260 to 380 nm. And they still render dynamic multi-color UV light imaging with different polymer matrixes, halogen ratios, and cations of perovskite materials. The mechanism of its fluorescence change is related to the chloride vacancies in perovskite materials. A patterned multi-color ultraviolet visualization pad is also demonstrated for visible conversion of the UV region. This technique may provide a universal strategy for information securities, UV visualizations, and dynamic multi-color displays in the IoT.
Collapse
Affiliation(s)
- Junlu Sun
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; Henan Key Laboratory of Diamond Optoelectronic Materials and Devices Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Tianshu Li
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China.
| | - Qilin Hua
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Shuai Chang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haizheng Zhong
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lijun Zhang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China.
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
| |
Collapse
|
12
|
Babakr KA, Amiri O, Guo LJ, Rashi MA, Mahmood PH. Kinetic and thermodynamic study in piezo degradation of methylene blue by SbSI/Sb 2S 3 nanocomposites stimulated by zirconium oxide balls. Sci Rep 2022; 12:15242. [PMID: 36085338 PMCID: PMC9463189 DOI: 10.1038/s41598-022-19552-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Mechanical energy harvesting by piezoelectric materials to drive catalysis reactions received extensive attention for environmental remediation. In this work, SbSI/Sb2S3 nanocomposites were synthesized as a catalyst. ZrO2 balls were used as an alternative mechanical force to ultrasonic for stimulating the piezocatalyst for the first time. The kinetics and thermodynamics of the piezo degradation of methylene blue (MB) were studied deeply. Besides the effect of the type of mechanical force, the number of ZrO2 balls, and temperature of the reaction on the degradation efficiency were studied. Here mechanical energy came from the collision of the ZrO2 balls with the catalyst particles. Using ZrO2 balls instead of ultrasonic vibration led to enhance degradation efficiency by 47% at 30 ± 5 °C. A kinetic study revealed that piezo degradation of methylene blue (MB) by SbSI/Sb2S3 catalyst followed pseudo-second-order kinetics. Based on thermodynamic results piezo degradation of MB was an exothermic reaction.
Collapse
Affiliation(s)
- Karukh A Babakr
- Chemistry Department, College of Science, University of Raparin, Rania, Kurdistan Region, Iraq
| | - Omid Amiri
- Chemistry Department, College of Science, University of Raparin, Rania, Kurdistan Region, Iraq. .,Faculty of Chemistry, Razi University, Kermanshah, 6714414971, Iran.
| | - L Jay Guo
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Mohammad Ali Rashi
- Chemistry Department, College of Science, University of Raparin, Rania, Kurdistan Region, Iraq
| | - Peshawa H Mahmood
- Chemistry Department, College of Science, University of Raparin, Rania, Kurdistan Region, Iraq
| |
Collapse
|
13
|
Organic–Inorganic Hybrid Perovskite Materials for Ultrasonic Transducer in Medical Diagnosis. CRYSTALS 2022. [DOI: 10.3390/cryst12081043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ultrasonic transducer is considered the most important component of ultrasound medical instruments, and its key active layer is generally fabricated by piezoelectric materials, such as BaTiO3, Pb (Zn, Ti)O3, PVDF, etc. As the star material, perovskite photovoltaic materials (organic and inorganic halide perovskite materials, such as CH3NH3PbI3, CsPbI3, etc.) have great potential to be widely used in solar cells, LEDs, detectors, and photoelectric and piezoelectric detectors due to their outstanding photoelectric and piezoelectric effects. Herein, we firstly discussed the research progress of commonly used piezoelectric materials and the corresponding piezoelectric effects, the current key scientific status, as well as the current application status in the field of ultrasound medicine. Then, we further explored the current progress of perovskite materials used in piezoelectric-effect devices, and their research difficulties. Finally, we designed an ideal ultrasonic transducer fabricated by perovskite photovoltaic materials and considered the future application prospects of organic and inorganic halide perovskite material in the field of ultrasound.
Collapse
|
14
|
Mohanty R, Mansingh S, Parida K, Parida K. Boosting sluggish photocatalytic hydrogen evolution through piezo-stimulated polarization: a critical review. MATERIALS HORIZONS 2022; 9:1332-1355. [PMID: 35139141 DOI: 10.1039/d1mh01899j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To address the growing energy demand, remarkable progress has been made in transferring the fossil fuel-based economy to hydrogen-based environmentally friendly photocatalytic technology. However, the sluggish production rate due to the quick charge recombination and slow diffusion process needs careful engineering to achieve the benchmark photocatalytic efficiency. Piezoelectric photocatalysis has emerged as a promising field in recent years due to its improved catalytic performance facilitated by a built-in electric field that promotes the effective separation of excitons when subjected to mechanical stimuli. This review discusses the recent progress in piezo-photocatalytic hydrogen evolution while elaborating on the mechanistic pathway, effect of piezo-polarization and various strategies adopted to improve piezo-photocatalytic activity. Moreover, our review systematically emphasizes the fundamentals of piezoelectricity and piezo-phototronics along with the operational mechanism for designing efficient piezoelectric photocatalysts. Finally, the summary and outlooks provide insight into the existing challenges and outline the future prospects and roadmap for the development of next-generation piezo-photocatalysts towards hydrogen evolution.
Collapse
Affiliation(s)
- Ritik Mohanty
- Centre for Nanoscience and Nanotechnology, Siksha 'O'Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India.
| | - Sriram Mansingh
- Centre for Nanoscience and Nanotechnology, Siksha 'O'Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India.
| | - Kaushik Parida
- School of Materials Science and Engineering, Nanyang Technological University Singapore, 50 Nanyang Avenue 639798, Singapore
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India.
| | - Kulamani Parida
- Centre for Nanoscience and Nanotechnology, Siksha 'O'Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India.
| |
Collapse
|
15
|
Solution processed and highly efficient UV-photodetector based on CsPbBr3 perovskite-polymer composite film. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Wu H, Murti BT, Singh J, Yang P, Tsai M. Prospects of Metal-Free Perovskites for Piezoelectric Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104703. [PMID: 35199947 PMCID: PMC9036044 DOI: 10.1002/advs.202104703] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Metal-halide perovskites have emerged as versatile materials for various electronic and optoelectronic devices such as diodes, solar cells, photodetectors, and sensors due to their interesting properties of high absorption coefficient in the visible regime, tunable bandgap, and high power conversion efficiency. Recently, metal-free organic perovskites have also emerged as a particular class of perovskites materials for piezoelectric applications. This broadens the chemical variety of perovskite structures with good mechanical adaptability, light-weight, and low-cost processability. Despite these achievements, the fundamental understanding of the underlying phenomenon of piezoelectricity in metal-free perovskites is still lacking. Therefore, this perspective emphasizes the overview of piezoelectric properties of metal-halide, metal-free perovskites, and their recent progress which may encourage material designs to enhance their applicability towards practical applications. Finally, challenges and outlooks of piezoelectric metal-free perovskites are highlighted for their future developments.
Collapse
Affiliation(s)
- Han‐Song Wu
- Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipei City10607Taiwan
| | - Bayu Tri Murti
- Graduate Institute of Biomedical Materials and Tissue EngineeringTaipei Medical UniversityTaipei City11031Taiwan
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan City32001Taiwan
| | - Jitendra Singh
- Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipei City10607Taiwan
| | - Po‐Kang Yang
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan City32001Taiwan
- Graduate Institute of Nanomedicine and Medical EngineeringTaipei Medical UniversityTaipei City11031Taiwan
| | - Meng‐Lin Tsai
- Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipei City10607Taiwan
| |
Collapse
|
17
|
Mahapatra AD, Lee JW. Metal oxide charge transporting layers for stable high-performance perovskite solar cells. CrystEngComm 2022. [DOI: 10.1039/d2ce00825d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes the recent progress in metal oxide charge transporting layers to achieve stable high-performance perovskite solar cells.
Collapse
Affiliation(s)
- Ayon Das Mahapatra
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka-560012, India
| | - Jin-Wook Lee
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nanoengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
18
|
Dai B, Biesold GM, Zhang M, Zou H, Ding Y, Wang ZL, Lin Z. Piezo-phototronic effect on photocatalysis, solar cells, photodetectors and light-emitting diodes. Chem Soc Rev 2021; 50:13646-13691. [PMID: 34821246 DOI: 10.1039/d1cs00506e] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The piezo-phototronic effect (a coupling effect of piezoelectric, photoexcitation and semiconducting properties, coined in 2010) has been demonstrated to be an ingenious and robust strategy to manipulate optoelectronic processes by tuning the energy band structure and photoinduced carrier behavior. The piezo-phototronic effect exhibits great potential in improving the quantum yield efficiencies of optoelectronic materials and devices and thus could help increase the energy conversion efficiency, thus alleviating the energy shortage crisis. In this review, the fundamental principles and challenges of representative optoelectronic materials and devices are presented, including photocatalysts (converting solar energy into chemical energy), solar cells (generating electricity directly under light illumination), photodetectors (converting light into electrical signals) and light-emitting diodes (LEDs, converting electric current into emitted light signals). Importantly, the mechanisms of how the piezo-phototronic effect controls the optoelectronic processes and the recent progress and applications in the above-mentioned materials and devices are highlighted and summarized. Only photocatalysts, solar cells, photodetectors, and LEDs that display piezo-phototronic behavior are reviewed. Material and structural design, property characterization, theoretical simulation calculations, and mechanism analysis are then examined as strategies to further enhance the quantum yield efficiency of optoelectronic devices via the piezo-phototronic effect. This comprehensive overview will guide future fundamental and applied studies that capitalize on the piezo-phototronic effect for energy conversion and storage.
Collapse
Affiliation(s)
- Baoying Dai
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Meng Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Haiyang Zou
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Yong Ding
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
19
|
Zhang X, Ma Y, Chen X, Li X, Zhou W, Ouedraogo NAN, Shirai Y, Zhang Y, Yan H. Improved efficiency and stability of flexible perovskite solar cells by a new spacer cation additive. RSC Adv 2021; 11:33637-33645. [PMID: 35497527 PMCID: PMC9042258 DOI: 10.1039/d1ra05399j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/29/2021] [Indexed: 12/05/2022] Open
Abstract
Flexible perovskite solar cells (PSCs) have attracted tremendous attention due to their potential application in portable and wearable electronics. However, the photoelectric conversion efficiency (PCE) of flexible PSCs is still far lower than that of usual rigid PSCs. Moreover, the mechanical stability of flexible PSCs cannot meet the needs of commercial applications because of the cracking of perovskite grains caused by bending stress. Here, we introduced a spacer cation additive (2-(chloromethyl) pyridine hydrochloride, CPHC) within the perovskite organic precursor to improve the device PCE and its mechanical stability. We observed that the CPHC spacer cation additive could simultaneously facilitate the crystallization of perovskite and stitch the grain boundaries to improve the flexibility. Compared to the 17.64% PCE of the control devices, the target flexible PSCs achieved a more highly efficiency over 19% with an improved mechanical stability (87.2% of the initial PCE after the 1000 cycles with the bending radius R = 6 mm). In addition, compared to methylammonium or formamidinium cation, due to the stronger hydrophobic and larger activation energy barrier for the ion migration of the CPHC spacer cation, the device retained over 80% of the initial PCE after 30 days storage in an ambient environment. A new type organic spacer CPHC acts as an adhesive between perovskite grains to improve the efficiency and mechanical stability of flexible perovskite solar cells.![]()
Collapse
Affiliation(s)
- Xiaobo Zhang
- College of Material Sciences and Engineering, Beijing University of Technology Beijing 100124 China
| | - Yang Ma
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Faculty of Information Technology, Beijing University of Technology Beijing 100124 China
| | - Xiaoqing Chen
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Faculty of Information Technology, Beijing University of Technology Beijing 100124 China
| | - Xuhong Li
- School of Physics, Beihang University Beijing 100191 China
| | - Wencai Zhou
- College of Material Sciences and Engineering, Beijing University of Technology Beijing 100124 China
| | | | - Yasuhiro Shirai
- National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yongzhe Zhang
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Faculty of Information Technology, Beijing University of Technology Beijing 100124 China
| | - Hui Yan
- College of Material Sciences and Engineering, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
20
|
Sun J, Li N, Dong L, Niu X, Zhao M, Xu Z, Zhou H, Shan C, Pan C. Interfacial-engineering enhanced performance and stability of ZnO nanowire-based perovskite solar cells. NANOTECHNOLOGY 2021; 32:475204. [PMID: 33445158 DOI: 10.1088/1361-6528/abdbeb] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Perovskite solar cells (PSCs) have attracted extensive attention due to their convenient fabrication and excellent photoelectric characteristics. The highest power conversion efficiency (PCE) of over 25% has been realized. However, ZnO as electron transport layer based PSCs exhibit inferior PCE and stability because of the mismatched energy-band and undesirable interfacial recombination. Here, we introduce a thin layer of SnO2nanocrystals to construct an interfacial engineering with gradient energy band and interfacial passivation via a facile wet chemical process at a low temperature. The best PCE obtained in this study reaches 18.36%, and the stability is substantially improved and maintains a PCE of almost 100% over 500 h. The low-temperature fabrication process facilitates the future application of ZnO/SnO2-based PSCs in flexible and stretchable electronics.
Collapse
Affiliation(s)
- Junlu Sun
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, 450001, People's Republic of China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
| | - Nengxu Li
- Department of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, 450001, People's Republic of China
| | - Xiuxiu Niu
- Department of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Mengqi Zhao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
| | - Ziqi Xu
- Department of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Huanping Zhou
- Department of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, 450001, People's Republic of China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
21
|
Ding R, Lyu Y, Wu Z, Guo F, Io WF, Pang SY, Zhao Y, Mao J, Wong MC, Hao J. Effective Piezo-Phototronic Enhancement of Flexible Photodetectors Based on 2D Hybrid Perovskite Ferroelectric Single-Crystalline Thin-Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101263. [PMID: 34176170 DOI: 10.1002/adma.202101263] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/23/2021] [Indexed: 06/13/2023]
Abstract
2D hybrid perovskites are very attractive for optoelectronic applications because of their numerous exceptional properties. The emerging 2D perovskite ferroelectrics, in which are the coupling of spontaneous polarization and piezoelectric effects, as well as photoexcitation and semiconductor behaviors, have great appeal in the field of piezo-phototronics that enable to effectively improve the performance of optoelectronic devices via modulating the electro-optical processes. However, current studies on 2D perovskite ferroelectrics focus on bulk ceramics that cannot endure irregular mechanical deformation and limit their application in flexible optoelectronics and piezo-phototronics. Herein, we synthesize ferroelectric EA4 Pb3 Br10 single-crystalline thin-films (SCFs) for integration into flexible photodetectors. The in-plane multiaxial ferroelectricity is evident within the EA4 Pb3 Br10 SCFs through systematic characterizations. Flexible photodetectors based on EA4 Pb3 Br10 SCFs are achieved with an impressive photodetection performance. More importantly, optoelectronic EA4 Pb3 Br10 SCFs incorporated with in-plane ferroelectric polarization and effective piezoelectric coefficient show great promise for the observation of piezo-phototronic effect, which is capable of greatly enhancing the photodetector performance. Under external strains, the responsivity of the flexible photodetectors can be modulated by piezo-phototronic effect with a remarkable enhancement up to 284%. Our findings shed light on the piezo-phototronic devices and offer a promising avenue to broaden functionalities of hybrid perovskite ferroelectrics.
Collapse
Affiliation(s)
- Ran Ding
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Yongxin Lyu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Zehan Wu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Feng Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Weng Fu Io
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Sin-Yi Pang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Yuqian Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Jianfeng Mao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Man-Chung Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
22
|
Chiang CH, Kan CW, Wu CG. Synergistic Engineering of Conduction Band, Conductivity, and Interface of Bilayered Electron Transport Layers with Scalable TiO 2 and SnO 2 Nanoparticles for High-Efficiency Stable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23606-23615. [PMID: 33974384 DOI: 10.1021/acsami.1c02105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A simple, synergistic engineering of the conduction band (CB), conductivity, and interface of TiO2-based bilayered electron transport layers (ETLs) via scalable TiO2 and SnO2 nanoparticles processed at low temperature (≤ 100 °C) for regular planar perovskite solar cells (PSCs) was developed. The bottom layer (Lt-TiO2:SnO2 nanocomposite film) was prepared by spin coating from the ethanol suspension of small ground TiO2 nanoparticles with big ground SnO2 nanoparticles as the additive. The top C-SnO2 layer (spin-coated from the concentrated commercial SnO2 nanoparticles (C-SnO2 NPs, 20 wt %, 7 nm in size suspended in H2O)) can be regarded as an interlayer between Lt-TiO2:SnO2 and perovskite (Psk) absorbers. Bilayered Lt-TiO2:SnO2/C-SnO2 ETLs are dense films with a cascade CB, good conductivity, facile electron extraction/transport ability, and a highly hydrophilic surface for depositing high-quality Psk films. Regular planar PSCs based on Lt-TiO2:SnO2/C-SnO2 ETLs combined with a (FAI)0.90(PbI2)0.94(MABr)0.10(PbBr2)0.10 absorber and a spiro-OMeTAD hole transporter achieved the highest power conversion efficiency of 22.04% with a negligible current hysteresis. The champion cell lost less than 3% of the initial efficiency under continuous room lighting (1000 lux) for 1000 h (lost 10% after 2184 h) without encapsulation under an inert atmosphere. Four related low-temperature-processed ETLs (Lt-TiO2/C-SnO2, Lt-C-SnO2, Lt-TiO2:SnO2, and Lt-TiO2) were fabricated using the same metal oxide nanoparticle suspensions and studied simultaneously to reveal the function of each metal oxide in the bilayered Lt-TiO2:SnO2/C-SnO2 ETLs. In the bottom Lt-TiO2:SnO2 layer, small TiO2 nanoparticles were needed for making a dense film, and highly conducting big SnO2 nanoparticles are used to increase the conductivity of ETLs and a handy electron transport path for reducing the charge accumulation and series resistance of the cell. A top C-SnO2 layer (regarded as an interlayer between Psk and Lt-TiO2:SnO2) was used to extract/transport electrons facilely, to form a bilayered ETL with a cascade CB, and to create a hydrophilic surface to deposit high-quality Psk films to enhance the photovoltaic performance of the PSCs. This study provides a blueprint for designing good-performance ETLs for high-efficiency, stable regular planar PSCs using various sized nanoparticles prepared in a very simple and low-cost way.
Collapse
Affiliation(s)
- Chien-Hung Chiang
- Department of Chemistry, National Central University, Jhong-Li, Chung-Li 32001, Taiwan
- Research Center for New Generation Light Driven Photovoltaic Modules, National Central University, Jhong-Li, Chung-Li 32001, Taiwan
| | - Chun-Wei Kan
- Department of Chemistry, National Central University, Jhong-Li, Chung-Li 32001, Taiwan
| | - Chun-Guey Wu
- Department of Chemistry, National Central University, Jhong-Li, Chung-Li 32001, Taiwan
- Research Center for New Generation Light Driven Photovoltaic Modules, National Central University, Jhong-Li, Chung-Li 32001, Taiwan
| |
Collapse
|
23
|
Wu W, Han X, Li J, Wang X, Zhang Y, Huo Z, Chen Q, Sun X, Xu Z, Tan Y, Pan C, Pan A. Ultrathin and Conformable Lead Halide Perovskite Photodetector Arrays for Potential Application in Retina-Like Vision Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006006. [PMID: 33475208 DOI: 10.1002/adma.202006006] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/19/2020] [Indexed: 05/28/2023]
Abstract
Solution-processed lead halide perovskites are considered one of the promising materials for flexible optoelectronics. However, the array integration of ultrathin flexible perovskite photodetectors (PDs) remains a significant challenge limited by the incompatibility of perovskite materials with manufacturing techniques involving polar liquids. Here, an ultrathin (2.4 µm) and conformable perovskite-based PD array (10 × 10 pixels) with ultralight weight (3.12 g m-2 ) and excellent flexibility, is reported. Patterned all-inorganic CsPbBr3 perovskite films with precise pixel position, controllable morphology, and homogenous dimension, are synthesized by a vacuum-assisted drop-casting patterning process as the active layer. The use of waterproof parylene-C film as substrate and encapsulation layer effectively protects the perovskite films against penetration of polar liquids during the peeling-off process. Benefitting from the encapsulation and ultrathin property, the device exhibits long-term stability in the ambient environment, and robust mechanical stability under bending or 50% compressive strain. More importantly, the ultrathin flexible PD arrays conforming to hemispherical support realize imaging of light distribution, indicating the potential applications in retina-like vision sensing.
Collapse
Affiliation(s)
- Wenqiang Wu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Xun Han
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jing Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Xiandi Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Yufei Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Zhihao Huo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Qiushuo Chen
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Xidi Sun
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Zhangsheng Xu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Yongwen Tan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
24
|
Mishra S, Ghosh S, Singh T. Progress in Materials Development for Flexible Perovskite Solar Cells and Future Prospects. CHEMSUSCHEM 2021; 14:512-538. [PMID: 33197140 DOI: 10.1002/cssc.202002095] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/16/2020] [Indexed: 06/11/2023]
Abstract
The perovskite solar cells (PSCs) have emerged as an established technology during the last decade, with the record efficiency of such solar cells having increased from 3.8 % to 25.5 %. Recently, flexible perovskite solar cells (fPSCs) have received much attention from the academic and the industrial communities, owing to their potential for various niche applications, including portable electronics, wearable power sources, electronic textiles, and large-scale industrial roofing. fPSCs are lightweight, bendable, and suitable for roll-to-roll industrial production and can be integrated easily over any surface. This Review discusses the recent development of materials for fPSCs based on various flexible substrates, including plastic, metal, and other flexible substrates, as well as fiber-shaped perovskite solar cells, with a focus on the device structure, material selection for each layer, mechanical flexibility and the environmental stability of the fPSC devices. Finally, future applications and the outlook for fPSCs are also discussed.
Collapse
Affiliation(s)
- Snehangshu Mishra
- School of Energy Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Subrata Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Trilok Singh
- School of Energy Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
25
|
Li C, Li J, Li Z, Zhang H, Dang Y, Kong F. Highly emissive halide perovskite nanocrystals: from lead to lead-free. CrystEngComm 2021. [DOI: 10.1039/d1ce00344e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly emissive halide perovskite nanocrystals with tunable emission spectra covering the entire visible spectra.
Collapse
Affiliation(s)
- Chunlong Li
- State Key Laboratory of Biobased Material and Green Papermaking
- Qilu University of Technology, Shandong Academy of Sciences
- P. R. China
| | - Jie Li
- International College of Optoelectronic Engineering
- Qilu University of Technology, Shandong Academy of Sciences
- P. R. China
| | - Zhengping Li
- State Key Laboratory of Biobased Material and Green Papermaking
- Qilu University of Technology, Shandong Academy of Sciences
- P. R. China
| | - Huayong Zhang
- State Key Laboratory of Biobased Material and Green Papermaking
- Qilu University of Technology, Shandong Academy of Sciences
- P. R. China
| | - Yangyang Dang
- School of Physics and Physical Engineering
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology
- Qufu Normal University
- Qufu
- P. R. China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking
- Qilu University of Technology, Shandong Academy of Sciences
- P. R. China
| |
Collapse
|
26
|
Zhang Y, Yang L, Zhang Y, Ding Z, Wu M, Zhou Y, Diao C, Zheng H, Wang X, Wang ZL. Enhanced Photovoltaic Performances of La-Doped Bismuth Ferrite/Zinc Oxide Heterojunction by Coupling Piezo-Phototronic Effect and Ferroelectricity. ACS NANO 2020; 14:10723-10732. [PMID: 32806032 DOI: 10.1021/acsnano.0c05398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ferroelectric materials have drawn widespread attention due to their switchable spontaneous polarization and anomalous photovoltaic effect. The coupling between ferroelectricity and the piezo-phototronic effect may lead to the design of distinctive photoelectric devices with multifunctional features. Here, we report an enhancement of the photovoltaic performances in the ferroelectric p-type La-doped bismuth ferrite film (BLFO)/n-type zinc oxide (ZnO) nanowire array heterojunction by rationally coupling the strain-induced piezoelectricity in ZnO nanowires and the ferroelectricity in BLFO. Under a compressive strain of -2.3% and a 10 V upward poling of the BLFO, the open-circuit voltage (VOC) and short-circuit current density (JSC) of the device increase by 8.4% and 54.7%, respectively. Meanwhile, the rise (/decay) time is modulated from 153.7 (/108.8) to 61.28 (/74.86) ms. Systematical band diagram analysis reveals that the promotion of photogenerated carriers and boost of the photovoltaic performances of the device can be attributed to the modulated carrier transport behaviors at the BLFO/ZnO interface and the superposed driving forces arising from the adding up of the piezoelectric potential and ferroelectric polarization. In addition, COMSOL simulation results of piezopotential distribution in ZnO nanowire arrays and the energy band structure change of the heterojunction further confirm the mechanisms. This work not only presents an approach to design high-performance ferroelectric photovoltaic devices but also further broadens the research scope of piezo-phototronics.
Collapse
Affiliation(s)
- Yuanzheng Zhang
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, P.R. China
| | - Liya Yang
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, P.R. China
| | - Yaju Zhang
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, P.R. China
| | - Zhenyu Ding
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, P.R. China
| | - Mengjun Wu
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, P.R. China
| | - Yan Zhou
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, P.R. China
| | - Chunli Diao
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, P.R. China
| | - Haiwu Zheng
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, P.R. China
| | - Xingfu Wang
- Institute of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P.R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083, P.R. China
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
27
|
Hua Q, Cui X, Liu H, Pan C, Hu W, Wang ZL. Piezotronic Synapse Based on a Single GaN Microwire for Artificial Sensory Systems. NANO LETTERS 2020; 20:3761-3768. [PMID: 32329622 DOI: 10.1021/acs.nanolett.0c00733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tactile information is efficiently captured and processed through a complex sensory system combined with mechanoreceptors, neurons, and synapses in human skin. Synapses are essential for tactile signal transmission between pre/post-neurons. However, developing an electronic device that integrates the functions of tactile information sensation and transmission remains a challenge. Here, we present a piezotronic synapse based on a single GaN microwire that can simultaneously achieve the capabilities of strain sensing and synaptic functions. The piezotronic effect in the wurtzite GaN is introduced to strengthen synaptic weight updates (e.g., 330% enhancement at a compressive stress of -0.36%) with pulse trains. A high gauge factor for strain sensing (ranging from 0 to -0.81%) of about 736 is also obtained. Remarkably, the piezotronic synapse enables the neuromorphic hardware achievement of the perception and processing of tactile information in a single micro/nanowire system, demonstrating an advance in biorealistic artificial intelligence systems.
Collapse
Affiliation(s)
- Qilin Hua
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Cui
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Weiguo Hu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
28
|
Lin Z, Yan J, Cai Q, Wen X, Dong H, Mu C. A sandwich-like electron transport layer to assist highly efficient planar perovskite solar cells. NANOSCALE 2019; 11:21917-21926. [PMID: 31701980 DOI: 10.1039/c9nr07876b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Co-modification of an electron transport layer (ETL) with metal oxides and organic molecules can optimize the structure of the ETL and improve the performance of perovskite solar cells (PSCs). Here, a sandwich-structured ETL consisting of MgO/SnO2/EA was designed by co-modifying a SnO2 ETL with magnesium oxide (MgO) and ethanolamine (EA). The device with an ETL modified with MgO and EA has excellent performance in enhancing electron transport and blocking holes. It also inhibits the formation of deep defect states and improves the stability of the device. The introduction of MgO effectively improves the open-circuit voltage (VOC) of the device, while EA increases the short-circuit current density (JSC). The optimal efficiency of the PSC using the ETL co-modified with MgO and EA is 20.23%, which is much higher than that of the device with the unmodified SnO2 ETL (17.94%). The method described here provides an effective way to develop high performance ETLs co-modified with metal oxides and organic compounds for perovskite-based optoelectronic devices.
Collapse
Affiliation(s)
- Zhichao Lin
- Department of Chemistry Renmin University of China, Beijing, 100872, P. R. China.
| | | | | | | | | | | |
Collapse
|
29
|
Endler LW, Wolfart F, Mangrich AS, Vidotti M, Marchesi LF. Facile method to prepare biochar–NiO nanocomposites as a promisor material for electrochemical energy storage devices. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00987-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|