1
|
Yang G, Dong L, Ren M, Cui B, Yuan X, Wang X, Li Y, Li W, Qiao G, Shao Y, Li W, Wang X, Xu P, Fang H, Di J, Li Q. Coiled Carbon Nanotube Fibers Sheathed by a Reinforced Liquid Crystal Elastomer for Strong and Programmable Artificial Muscles. NANO LETTERS 2024; 24:9608-9616. [PMID: 39012768 DOI: 10.1021/acs.nanolett.4c02239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Fibers of liquid crystal elastomers (LCEs) as promising artificial muscle show ultralarge and reversible contractile strokes. However, the contractile force is limited by the poor mechanical properties of the LCE fibers. Herein, we report high-strength LCE fibers by introducing a secondary network into the single-network LCE. The double-network LCE (DNLCE) shows considerable improvements in tensile strength (313.9%) and maximum actuation stress (342.8%) compared to pristine LCE. To facilitate the controllability and application, a coiled artificial muscle fiber consisting of DNLCE-coated carbon nanotube (CNT) fiber is prepared. When electrothermally driven, the artificial muscle fiber outputs a high actuation performance and programmable actuation. Furthermore, by knitting the artificial muscle fibers into origami structures, an intelligent gripper and crawling inchworm robot have been demonstrated. These demonstrations provide promising application scenarios for advanced intelligent systems in the future.
Collapse
Affiliation(s)
- Guang Yang
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lizhong Dong
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ming Ren
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Bo Cui
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaojie Yuan
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaobo Wang
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuxin Li
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Wei Li
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Guanlong Qiao
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yunfeng Shao
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Weiwei Li
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaona Wang
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Panpan Xu
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongbin Fang
- Institute of AI and Robotics, Fudan University, Shanghai 200433, China
| | - Jiangtao Di
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qingwen Li
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
2
|
Dong Y, Wang L, Zhang Z, Ji F, Chan TKF, Yang H, Chan CPL, Yang Z, Chen Z, Chang WT, Chan JYK, Sung JJY, Zhang L. Endoscope-assisted magnetic helical micromachine delivery for biofilm eradication in tympanostomy tube. SCIENCE ADVANCES 2022; 8:eabq8573. [PMID: 36206344 PMCID: PMC9544342 DOI: 10.1126/sciadv.abq8573] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Occlusion of the T-tube (tympanostomy tube) is a common postoperative sequela related to bacterial biofilms. Confronting biofilm-related infections of T-tubes, maneuverable and effective treatments are still challenging presently. Here, we propose an endoscopy-assisted treatment procedure based on the wobbling Fe2O3 helical micromachine (HMM) with peroxidase-mimicking activity. Different from the ideal corkscrew motion, the Fe2O3 HMM applies a wobbling motion in the tube, inducing stronger mechanical force and fluid convections, which not only damages the biofilm occlusion into debris quickly but also enhances the catalytic generation and diffusion of reactive oxygen species (ROS) for killing bacteria cells. Moreover, the treatment procedure, which integrated the delivery, actuation, and retrieval of Fe2O3 HMM, was validated in the T-tube implanted in a human cadaver ex vivo. It enables the visual operation with ease and is gentle to the tympanic membrane and ossicles, which is promising in the clinical application.
Collapse
Affiliation(s)
- Yue Dong
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lu Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
| | - Zifeng Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fengtong Ji
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tony K. F. Chan
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haojin Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Catherine P. L. Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhengxin Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Tsz Chang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. (L.Z.); (J.Y.K.C.); (W.T.C.)
| | - Jason Y. K. Chan
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. (L.Z.); (J.Y.K.C.); (W.T.C.)
| | - Joseph J. Y. Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. (L.Z.); (J.Y.K.C.); (W.T.C.)
| |
Collapse
|
3
|
Li M, Pal A, Aghakhani A, Pena-Francesch A, Sitti M. Soft actuators for real-world applications. NATURE REVIEWS. MATERIALS 2022; 7:235-249. [PMID: 35474944 PMCID: PMC7612659 DOI: 10.1038/s41578-021-00389-7] [Citation(s) in RCA: 177] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 05/22/2023]
Abstract
Inspired by physically adaptive, agile, reconfigurable and multifunctional soft-bodied animals and human muscles, soft actuators have been developed for a variety of applications, including soft grippers, artificial muscles, wearables, haptic devices and medical devices. However, the complex performance of biological systems cannot yet be fully replicated in synthetic designs. In this Review, we discuss new materials and structural designs for the engineering of soft actuators with physical intelligence and advanced properties, such as adaptability, multimodal locomotion, self-healing and multi-responsiveness. We examine how performance can be improved and multifunctionality implemented by using programmable soft materials, and highlight important real-world applications of soft actuators. Finally, we discuss the challenges and opportunities for next-generation soft actuators, including physical intelligence, adaptability, manufacturing scalability and reproducibility, extended lifetime and end-of-life strategies.
Collapse
Affiliation(s)
- Meng Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Aniket Pal
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Amirreza Aghakhani
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Abdon Pena-Francesch
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Department of Materials Science and Engineering, Macromolecular Science and Engineering, Robotics Institute, University of Michigan, Ann Arbor, MI, USA
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey
| |
Collapse
|
4
|
Cui L, Xu H, An Y, Xu M, Lei Z, Jin X. Electrodeposition preparation of NiCo2S4 nanoparticles on N-doped activated carbon modified graphene film for asymmetric all-solid-state supercapacitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01729f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, NiCo2S4 nanoparticles were anchored on the surface of nitrogen doped activated carbon modified graphene (GNAC) by simple electrodeposition to prepare GNAC/NiCo2S4-15 composite electrode materials for high-performance supercapacitors....
Collapse
|
5
|
Untethered Origami Worm Robot with Diverse Multi-Leg Attachments and Responsive Motions under Magnetic Actuation. ROBOTICS 2021. [DOI: 10.3390/robotics10040118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nowadays, origami folding in combination with actuation mechanisms can offer deployable structure design, yield compliance, and have several properties of soft material. An easy complex folding pattern can yield an array of functionalities in actuated hinges or active spring elements. This paper presents various cylinder origami robot designs that can be untethered magnetically actuated. The different designs are analyzed and compared to achieve the following three types of motion: Peristaltic, rolling, and turning in different environments, namely, board, sandpaper, and sand. The proposed origami robot is able translate 53 mm in peristaltic motion within 20 s and is able to roll one complete cycle in 1 s and can turn ≈180∘ in 1.5 s. The robot also demonstrated a peristaltic locomotion at a speed of ≈2.5 mm s−1, ≈1.9 mm s−1, and ≈1.3 mm s−1 in board, sandpaper, and sand respectively; rolling motion at a speed of 1 cycle s−1, ≈0.66 cycles s−1, and ≈0.33 cycles s−1 in board, sandpaper, and sand respectively; and turning motion of ≈180∘, ≈83∘, and ≈58∘ in board, sandpaper, and sand respectively. The evaluation of the robotic motion and actuation is discussed in detail in this paper.
Collapse
|
6
|
|
7
|
Jin X, Feng C, Ponnamma D, Yi Z, Parameswaranpillai J, Thomas S, Salim NV. Review on exploration of graphene in the design and engineering of smart sensors, actuators and soft robotics. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
8
|
David R, Tuladhar A, Zhang L, Arges C, Kumar R. Effect of Oxidation Level on the Interfacial Water at the Graphene Oxide-Water Interface: From Spectroscopic Signatures to Hydrogen-Bonding Environment. J Phys Chem B 2020; 124:8167-8178. [PMID: 32804501 PMCID: PMC7503515 DOI: 10.1021/acs.jpcb.0c05282] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
The interfacial region
of the graphene oxide (GO)-water system
is nonhomogenous due to the presence of two distinct domains: an oxygen-rich
surface and a graphene-like region. The experimental vibrational sum-frequency
generation (vSFG) spectra are distinctly different for the fully oxidized
GO-water interface as compared to the reduced GO-water case. Computational
investigations using ab initio molecular dynamics were performed to
determine the molecular origins of the different spectroscopic features.
The simulations were first validated by comparing the simulated vSFG
spectra to those from the experiment, and the contributions to the
spectra from different hydrogen bonding environments and interfacial
water orientations were determined as a function of the oxidation
level of the GO sheet. The ab initio simulations also revealed the
reactive nature of the GO-water interface.
Collapse
Affiliation(s)
- Rolf David
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Aashish Tuladhar
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Le Zhang
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Christopher Arges
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Revati Kumar
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
9
|
Zhang T, Wang D, Liu R, Xie Y, Li J, Wang L. A Coral Reef-like Structure Fabricated on Cellulose Paper for Simultaneous Oil-Water Separation and Electromagnetic Shielding Protection. ACS OMEGA 2020; 5:18105-18113. [PMID: 32743184 PMCID: PMC7391849 DOI: 10.1021/acsomega.0c01666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
The functional design of paper-based material surfaces with renewable functions and environmentally friendly properties is prevalent nowadays. Herein, a superhydrophobic surface with a coral reef-like structure was prepared on filter paper by electroless copper plating, rapid silver nitrate etching, and facile 1-hexadecanethiol impregnation. After low-surface-energy thiol treatment, this unique coral reef-like structure surface showed excellent superhydrophobicity with a water contact angle of 163.8° and superoleophobicity with an oil contact angle of 0°, which could be used for oil-water separation and had a separation efficiency above 89.17% after 12 consecutive oil-water separations. Because the copper layer and silver nanostructure are both excellent conductive materials, the modified paper exhibited excellent electromagnetic shielding properties, and the electromagnetic interface shielding effectiveness exceeded 63 dB from 9 kHz to 1.5 GHz. The modified paper also had excellent self-cleaning properties and a better corrosion resistance. The unique three-dimensional interweaving structure between the cellulose fibers in the filter paper is fully utilized, and the substitution reaction between the silver ion and the copper coating produces a coral reef-like structure, which provides a new strategy for promoting the wide application of paper-based materials.
Collapse
|
10
|
Zhang Y, Chang TH, Jing L, Li K, Yang H, Chen PY. Heterogeneous, 3D Architecturing of 2D Titanium Carbide (MXene) for Microdroplet Manipulation and Voice Recognition. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8392-8402. [PMID: 31971769 DOI: 10.1021/acsami.9b18879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mismatched deformation in a bilayer composite with rigid coating on a soft substrate results in complex and uniform topographic patterns, yet it remains challenging to heterogeneously pattern the upper coatings with various localized structures. Herein, a heterogeneous, 3D microstructure composed of Ti3C2Tx titanium carbide (MXene) and single-walled carbon nanotubes (SWNTs) was fabricated using a one-step deformation of a thermally responsive substrate with designed open holes. The mechanically deformed SWNT-MXene (s-MXene) structure was next transferred onto an elastomeric substrate, and the resulting s-MXene/elastomer bilayer device exhibited three localized surface patterns, including isotropic crumples, periodic wrinkles, and large papillae-like microstructures. By adjusting the number and pattern, the s-MXene papillae arrays exhibited superhydrophobicity (>170°), strong and tunable adhesive force (52.3-110.6 μN), and ultra-large liquid capacity (up to 35 μL) for programmable microdroplet manipulation. The electrically conductive nature of s-MXene further enabled proper thermal management on microdroplets via Joule heating for miniaturized antibacterial tests. The s-MXene papillae were further fabricated in a piezoresistive pressure sensor with high sensitivity (11.47 kPa-1). The output current changes of s-MXene sensors were highly sensitive to voice vibrations and responded identically with prerecorded profiles, promising their application in accurate voice acquisition and recognition.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Chemical and Biomolecular Engineering , National University of Singapore (NUS) , 117585 , Singapore
| | - Ting-Hsiang Chang
- Department of Chemical and Biomolecular Engineering , National University of Singapore (NUS) , 117585 , Singapore
| | - Lin Jing
- Department of Chemical and Biomolecular Engineering , National University of Singapore (NUS) , 117585 , Singapore
| | - Kerui Li
- Department of Chemical and Biomolecular Engineering , National University of Singapore (NUS) , 117585 , Singapore
| | - Haitao Yang
- Department of Chemical and Biomolecular Engineering , National University of Singapore (NUS) , 117585 , Singapore
| | - Po-Yen Chen
- Department of Chemical and Biomolecular Engineering , National University of Singapore (NUS) , 117585 , Singapore
- Department of Chemical and Biomolecular Engineering , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
11
|
Machnicki CE, Fu F, Jing L, Chen PY, Wong IY. Mechanochemical engineering of 2D materials for multiscale biointerfaces. J Mater Chem B 2019; 7:6293-6309. [PMID: 31460549 PMCID: PMC6812607 DOI: 10.1039/c9tb01006h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomically thin nanomaterials represent a unique paradigm for interfacing with biological systems due to their mechanical flexibility, exceptional interfacial area, and ease of chemical functionalization. In particular, these two-dimensional (2D) materials are able to bend, curve, and fold in response to biologically-generated forces or other external stimuli. Such origami-like folding of 2D materials into wrinkled or crumpled topographies allows them to withstand large deformations by accordion-like unfolding, with implications for stretchable and shape-changing devices. Here, we review how mechanically manipulated 2D materials can interact with biological systems across a multitude of length scales. We focus on recent work where wrinkling, crumpling, or bending of 2D materials permits new chemical and material properties, with four case studies: (i) programming biomolecular reactivity and enhanced sensing, (ii) directed adhesion and encapsulation of bacteria or mammalian cells, (iii) stimuli-responsive actuators and soft robotics, and (iv) stretchable barrier technologies and wearable human-scale sensors. Finally, we consider future directions for manufacturing, materials and systems integration, as well as biocompatibility. Taken together, these 2D materials may enable new avenues for ultrasensitive molecular detection, biomaterial scaffolds, soft machines, and wearable technologies.
Collapse
Affiliation(s)
- Catherine E Machnicki
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA. and Department of Chemistry, Brown University, Providence, RI 02912, USA
| | - Fanfan Fu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Lin Jing
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Po-Yen Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
12
|
Yang H, Yeow BS, Li Z, Li K, Chang TH, Jing L, Li Y, Ho JS, Ren H, Chen PY. Multifunctional metallic backbones for origami robotics with strain sensing and wireless communication capabilities. Sci Robot 2019; 4:4/33/eaax7020. [DOI: 10.1126/scirobotics.aax7020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022]
Abstract
The tight integration of actuation, sensing, and communication capabilities into origami robots enables the development of new-generation functional robots. However, this task is challenging because the conventional materials (e.g., papers and plastics) for building origami robots lack design opportunities for incorporating add-on functionalities. Installing external electronics requires high system integration and inevitably increases the robotic weight. Here, a graphene oxide (GO)–enabled templating synthesis was developed to produce reconfigurable, compliant, multifunctional metallic backbones for the fabrication of origami robots with built-in strain sensing and wireless communication capabilities. The GO-enabled templating synthesis realized the production of complex noble metal origamis (such as Pt) with high structural replication of their paper templates. The reproduced Pt origami structures were further stabilized with thin elastomer, and the Pt-elastomer origamis were reconfigurable and served as the multifunctional backbones for building origami robots. Compared with traditional paper and plastic materials, the reconfigurable Pt backbones were more deformable, fire retardant, and power efficient. In addition, the robots with conductive Pt-elastomer backbones (Pt robots) demonstrated distinct capabilities—such as on-demand resistive heating, strain sensing, and built-in antennas—without the need for external electronics. The multifunctionality of Pt robots was further demonstrated to extend beyond the capabilities of traditional paper-based robots, such as melting an ice cube to escape, monitoring/recording robotic motions in real time, and wireless communications between robots. The development of multifunctional metallic backbones that couple actuation, sensing, and communication enriches the material library for the fabrication of soft robotics toward high functional integration.
Collapse
|
13
|
Xu W, Gracias DH. Soft Three-Dimensional Robots with Hard Two-Dimensional Materials. ACS NANO 2019; 13:4883-4892. [PMID: 31070882 DOI: 10.1021/acsnano.9b03051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inspired by biological organisms, soft engineered robots seek to augment the capabilities of rigid robots by providing safe, compliant, and flexible interfaces for human-machine interactions. Soft robots provide significant advantages in applications ranging from pick-and-place, prostheses, wearables, and surgical and drug-delivery devices. Conventional soft robots are typically composed of elastomers or gels, where changes in material properties such as stiffness or swelling control actuation. However, soft materials have limited electronic and optical performance, mechanical rigidity, and stability against environmental damage. Atomically thin two-dimensional layered materials (2DLMs) such as graphene and transition metal dichalcogenides have excellent electrical, optical, mechanical, and barrier properties and have been used to create ultrathin interconnects, transistors, photovoltaics, photocatalysts, and biosensors. Importantly, although 2DLMs have high in-plane stiffness and rigidity, they have high out-of-plane flexibility and are soft from that point of view. In this Perspective, we discuss the use of 2DLMs either in their continuous monolayer state or as composites with elastomers and hydrogels to create soft three-dimensional (3D) robots, with a focus on origami-inspired approaches. We classify the field, outline major methods, and highlight challenges toward seamless integration of hybrid materials to create multifunctional robots with the characteristics of soft devices.
Collapse
|