He Y, Lin X, Feng Y, Wu F, Luo B, Liu M. Non-spherical assemblies of chitin nanocrystals by drop impact assembly.
J Colloid Interface Sci 2023;
651:714-725. [PMID:
37567115 DOI:
10.1016/j.jcis.2023.07.188]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Preparing complex non-spherical assemblies of elongated nanoparticles and exploring their topological conformations is a challenge due to liquid crystals' mobility and elastic distortion. Here, we fabricated a variety of non-spherical liquid crystal assemblies of chitin nanocrystals (ChNCs) in a coagulation bath containing sodium triphosphate (STP) by drop impact assembly method, and the forming mechanism and internal topology were systematically investigated. The collection height, ChNCs concentration, and STP concentration have significant influence on the shape and size of the assembled structures. Long-range ordered structures and long-lived topological textures of the ChNCs liquid crystal can be obtained since a molecular interaction of hydrogen bonding and electrostatic attractions between ChNCs and STP occur during the impact assembly. Rheological and kinetic analysis suggested the shear thinning behavior of the ChNCs liquid crystals and the rapid gelation phenomenon of ChNCs induced by STP. Morphology results showed that the rod-like ChNCs in the non-spherical assemblies were orderly and closely arranged with periodic repetition and layered structure. The non-spherical assemblies of ChNCs liquid crystals can be used as carriers of carbon nanotubes, magnetic Fe3O4 nanoparticles, synthesized polymers, and anticancer drugs for functional composite applications. The drop impact assembly method of ChNCs liquid crystal structure is highly controllable on the composition, morphology, and function, which shows promising applications in energy, environmental-friendly, and bioactive materials.
Collapse