1
|
Zhang CC, Zhang JY, Feng JR, Liu ST, Ding SJ, Ma L, Wang QQ. Plasmon-enhanced second harmonic generation of metal nanostructures. NANOSCALE 2024; 16:5960-5975. [PMID: 38446099 DOI: 10.1039/d3nr06675d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
As the most common nonlinear optical process, second harmonic generation (SHG) has important application value in the field of nanophotonics. With the rapid development of metal nanomaterial processing and chemical preparation technology, various structures based on metal nanoparticles have been used to achieve the enhancement and modulation of SHG. In the field of nonlinear optics, plasmonic metal nanostructures have become potential candidates for nonlinear optoelectronic devices because of their highly adjustable physical characteristics. In this article, first, the basic optical principles of SHG and the source of surface symmetry breaking in metal nanoparticles are briefly introduced. Next, the related reports on SHG in metal nanostructures are reviewed from three aspects: the enhancement of SHG efficiency by double resonance structures, the SHG effect based on magnetic resonance and the harmonic energy transfer. Then, the applications of SHG in the sensing, imaging and in situ monitoring of metal nanostructures are summarized. Future opportunities for SHG in composite systems composed of metal nanostructures and two-dimensional materials are also proposed.
Collapse
Affiliation(s)
- Cong-Cong Zhang
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China.
| | - Jia-Yi Zhang
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China.
| | - Jing-Ru Feng
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China.
| | - Si-Ting Liu
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China.
| | - Si-Jing Ding
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China.
| | - Liang Ma
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Qu-Quan Wang
- School of Science, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| |
Collapse
|
2
|
Yu T, Liu X, Kang H, Ding T, Cheng R, He J, Sun Z, Zeng M, Fu L. Cutting-Edge Research in Nanoscience and Nanotechnology: Celebrating the 130th Anniversary of Wuhan University. ACS NANO 2023; 17:24423-24430. [PMID: 38095315 DOI: 10.1021/acsnano.3c11892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Thanks to the fast-paced progress of microscopic theories and nanotechnologies, a tremendous world of fundamental science and applications has opened up at the nanoscale. Ranging from quantum physics to chemical and biological mechanisms and from device functionality to materials engineering, nanoresearch has become an essential part of various fields. As one of the top universities in China, Wuhan University (WHU) aims to promote cutting-edge nanoresearch in multiple disciplines by leveraging comprehensive academic programs established throughout 130 years of history. As visible in prestigious scientific journals such as ACS Nano, WHU has made impactful advancements in various frontiers, including nanophotonics, functional nanomaterials and devices, biomedical nanomaterials, nanochemistry, and environmental science. In light of these contributions, WHU will be committed to serving talents and scientists wholeheartedly, fully supporting international collaborations and continuously driving innovative research.
Collapse
Affiliation(s)
- Ting Yu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, People's Republic of China
| | - Xiaoze Liu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, People's Republic of China
| | - Haifeng Kang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Tao Ding
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, People's Republic of China
| | - Zhijun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, People's Republic of China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
3
|
Feng JR, Zhao ZR, Xiong ZL, Kang HS, Ding SJ, Ma L, Zhou L. Ultrabroad spectral response and excellent SERS performance of PbS-assisted Au/PbS/Au nanostars. NANOSCALE 2022; 14:17633-17640. [PMID: 36412494 DOI: 10.1039/d2nr04666k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Noble metal nanomaterials have many excellent optical properties due to localized surface plasmon resonance induced by external electric and magnetic fields. The plasmon-enhanced optical properties of nanomaterials can be controlled by changing their shapes or compositions. Here, we use a gentle approach to synthesize Au/PbS/Au nanostars with multiple tips and explore the surface-enhanced Raman scattering (SERS) activity, the second harmonic generation (SHG), and photocatalytic performance. The Au/PbS/Au nanostars have ultrabroad spectral responses and significantly enhanced local electric fields near the sharp tips. The size and tip length of the Au/PbS/Au nanostars can be adjusted by changing the amount of HAuCl4. The Au/PbS/Au nanostars exhibit largely enhanced SERS activity and photocatalytic degradation efficiency compared with the Au bipyramids and the Au BPs@PbS nanocrystals. In addition, the SHG of Au/PbS/Au nanostars is also significantly enhanced due to asymmetry and local field enhancement. This research shows potential in many applications ranging from photophysics to photochemistry.
Collapse
Affiliation(s)
- Jing-Ru Feng
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China.
| | - Zhi-Rui Zhao
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China.
| | - Zhong-Long Xiong
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China.
| | - Hao-Sen Kang
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Si-Jing Ding
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China.
| | - Liang Ma
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Li Zhou
- School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
4
|
Shen S, Zeng Y, Zheng Z, Gao R, Sun G, Yang Z. Nonlinear light amplification via 3D plasmonic nanocavities. OPTICS EXPRESS 2022; 30:2610-2625. [PMID: 35209397 DOI: 10.1364/oe.449337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Plasmonic nanocavities offer prospects for the amplification of inherently weak nonlinear responses at subwavelength scales. However, constructing these nanocavities with tunable modal volumes and reduced optical losses remains an open challenge in the development of nonlinear nanophotonics. Herein, we design and fabricate three-dimensional (3D) metal-dielectric-metal (MDM) plasmonic nanocavities that are capable of amplifying second-harmonic lights by up to three orders of magnitude with respect to dielectric-metal counterparts. In combination with experimental estimations of quantitative contributions of constituent parts in proposed 3D MDM designs, we further theoretically disclose the mechanism governing this signal amplification. We discover that this phenomenon can be attributed to the plasmon hybridization of both dipolar plasmon resonances and gap cavity resonances, such that an energy exchange channel can be attained and helps expand modal volumes while maintaining strong field localizations. Our results may advance the understanding of efficient nonlinear harmonic generations in 3D plasmonic nanostructures.
Collapse
|
5
|
Abstract
Recent global warming has resulted in shifting of weather patterns and led to intensification of natural disasters and upsurges in pests and diseases. As a result, global food systems are under pressure and need adjustments to meet the change—often by pesticides. Unfortunately, such agrochemicals are harmful for humans and the environment, and consequently need to be monitored. Traditional detection methods currently used are time consuming in terms of sample preparation, are high cost, and devices are typically not portable. Recently, Surface Enhanced Raman Scattering (SERS) has emerged as an attractive candidate for rapid, high sensitivity and high selectivity detection of contaminants relevant to the food industry and environmental monitoring. In this review, the principles of SERS as well as recent SERS substrate fabrication methods are first discussed. Following this, their development and applications for agrifood safety is reviewed, with focus on detection of dye molecules, melamine in food products, and the detection of different classes of pesticides such as organophosphate and neonicotinoids.
Collapse
|
6
|
Zhou T, Ding SJ, Wu ZY, Yang DJ, Zhou LN, Zhao ZR, Ma L, Wang W, Ma S, Wang SM, Zou JN, Zhou L, Wang QQ. Synthesis of AuAg/Ag/Au open nanoshells with optimized magnetic plasmon resonance and broken symmetry for enhancing second-harmonic generation. NANOSCALE 2021; 13:19527-19536. [PMID: 34806104 DOI: 10.1039/d1nr04814g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The cooperation of magnetic and electric plasmon resonances in cup-shaped metallic nanostructures exhibits significant capability for second-harmonic generation (SHG) enhancement. Herein, we report an approach for synthesizing Au open nanoshells with tunable numbers and sizes of openings on a template of six-pointed PbS nanostars. The morphology of Au nanoshells is controlled by adjusting the amount of HAuCl4, and the characteristic shapes of pointed nanocaps, open nanoshells, and hollow nanostars are obtained. Owing to the collaboration of electric and magnetic plasmon resonance modes, the Au nanoshells exhibit significantly broadened and highly tunable optical responses. Furthermore, the morphology-dependent SHG of the Au nanoshells shows two maximal SHG intensities, corresponding to four-opening and one-opening Au nanoshells with appropriate opening sizes. Ag/Au and AuAg/Ag/Au open nanoshells were further investigated to achieve enhanced SHG. By adjusting the thickness of the Ag shell, the SHG intensity of Ag/Au open nanoshells reaches a maximum due to the gradient field at the AuAg bimetallic interface. After replacing the Ag shells with Au shells, the SHG intensity of AuAg/Ag/Au open nanoshells reaches a maximum due to further symmetry breaking. These findings provide a strategy to prepare colloidal metal nanocrystals with prospective applications ranging from nonlinear photonic nanodevices to biospectroscopy and photocatalysis.
Collapse
Affiliation(s)
- Tao Zhou
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Si-Jing Ding
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Zhi-Yong Wu
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Da-Jie Yang
- Mathematics and Physics Department, North China Electric Power, University, Beijing 102206, China
| | - Li-Na Zhou
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Zhi-Rui Zhao
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Liang Ma
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Wei Wang
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Song Ma
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Si-Man Wang
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Jia-Nan Zou
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Li Zhou
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Qu-Quan Wang
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
7
|
Ma S, Yang DJ, Ding SJ, Liu J, Wang W, Wu ZY, Liu XD, Zhou L, Wang QQ. Tunable Size Dependence of Quantum Plasmon of Charged Gold Nanoparticles. PHYSICAL REVIEW LETTERS 2021; 126:173902. [PMID: 33988417 DOI: 10.1103/physrevlett.126.173902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
The quantum behavior of surface plasmons has received extensive attention, benefiting from the development of exquisite nanotechnology and the diverse applications. Blueshift, redshift, and nonshift of localized surface plasmon resonances (LSPRs) have all been reported as the particle size decreases and enters the quantum size regime, but the underlying physical mechanism to induce these controversial size dependences is not clear. Herein, we propose an improved semiclassical model for modifying the dielectric function of metal nanospheres by combining the intrinsic quantized electron transitions and surface electron injection or extraction to investigate the plasmon shift and LSPR size dependence of the charged Au nanoparticles. We experimentally observe that the nonmonotonic blueshift of LSPRs with size for Au nanoparticles is turned into an approximately monotonic blueshift by increasing the electron donor concentration in the reduction solution, and it can also be transformed to an approximately monotonic redshift after surface passivation by ligand molecules. Moreover, we demonstrate controlled blueshift and redshift for the electron and hole plasmons in Cu_{2-x}S@Au core-shell nanoparticles by injecting electrons. The experimental observations and the theoretical calculations clarify the controversial size dependences of LSPR reported in the literature, reveal the critical role of surface electron injection or extraction in the transformation between the different size dependences of LSPRs, and are helpful for understanding the nature of surface plasmons in the quantum size regime.
Collapse
Affiliation(s)
- Song Ma
- Key Laboratory of Artificial Micro-and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Da-Jie Yang
- Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Si-Jing Ding
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Jia Liu
- Key Laboratory of Artificial Micro-and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Wei Wang
- Key Laboratory of Artificial Micro-and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhi-Yong Wu
- Key Laboratory of Artificial Micro-and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiao-Dan Liu
- Key Laboratory of Artificial Micro-and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Li Zhou
- Key Laboratory of Artificial Micro-and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Qu-Quan Wang
- Key Laboratory of Artificial Micro-and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|