1
|
Rani N, Kumari K, Hooda V. The role of nanoparticles in transforming plant genetic engineering: advancements, challenges and future prospects. Funct Integr Genomics 2025; 25:23. [PMID: 39841261 DOI: 10.1007/s10142-025-01528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
Despite years of progress in biotechnology, altering the genetic makeup of many plant species, especially their plastids, remains challenging. The existence of a cell wall poses a significant obstacle to the effectual transportation of biomolecules. Developing efficient methods to introduce genes into plant cells and organelles without causing harm is an ongoing area of research. Traditional approaches like Agrobacterium-mediated transformation, biolistic particle delivery, electroporation and polyethylene glycol (PEG) transformation have shown some success but come with limitations like laborious, time-consuming and causing tissue damage. For instance, the Agrobacterium method can be applied only to the restricted host range, while PEG transformation and biolistic particle delivery are not very efficient. In contrast, nanotechnology made an appearance in the field of genetic engineering. Nanoparticles act as delivery vehicles for many cargos in animals. However, in plants, the application of nanocarriers for the delivery of biomolecules is still in its infant stage. Nonetheless, it holds immense potential for the future of plant biotechnology and genome editing.
Collapse
Affiliation(s)
- Neelam Rani
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India
| | - Kusum Kumari
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vinita Hooda
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India.
| |
Collapse
|
2
|
Yonenuma R, Mori H. RAFT-synthesis and self-assembly-induced emission of pendant diphenylalanine-tetraphenylethylene copolymers. SOFT MATTER 2023; 19:8403-8412. [PMID: 37877167 DOI: 10.1039/d3sm00988b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/26/2023]
Abstract
Manipulation of the properties of aggregation-induced emission luminogens (AIEgens) by combining self-assembling motifs has attracted significant interest as a promising approach to developing various advanced materials. In this study, pendant diphenylalanine-tetraphenylethylene (TPE) copolymers exhibiting the ability for self-assembly and AIE properties were synthesized via reversible addition-fragmentation chain-transfer (RAFT) copolymerization. The resulting anionic and non-ionic amphiphilic copolymers with a carbon-carbon main chain bearing diphenylalanine-TPE through-space interactions self-assembled into nanorods and nanofibers, showing blue emissions originating from the aggregation of TPE side chains in the assembled structures. Suitable tuning of the comonomer composition, monomer structure, and environmental conditions (e.g., solvent polarity) enables manipulation of the self-assembled structures, AIE properties, and aggregation-induced circular dichroism by achiral TPE units via through-space interactions with diphenylalanine moieties.
Collapse
Affiliation(s)
- Ryo Yonenuma
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa City, Yamagata Prefecture 992-8510, Japan.
| | - Hideharu Mori
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa City, Yamagata Prefecture 992-8510, Japan.
| |
Collapse
|
3
|
Jeong J, Szczepaniak G, Das SR, Matyjaszewski K. Synthesis of RNA-Amphiphiles via Atom Transfer Radical Polymerization in the Organic Phase. PRECISION CHEMISTRY 2023; 1:326-331. [PMID: 37529716 PMCID: PMC10389804 DOI: 10.1021/prechem.3c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 08/03/2023]
Abstract
The combination of hydrophobic polymers with nucleic acids is a fascinating way to engineer the self-assembly behavior of nucleic acids into diverse nanostructures such as micelles, vesicles, nanosheets, and worms. Here we developed a robust route to synthesize a RNA macroinitiator with protecting groups on the 2'-hydroxyl groups in the solid phase using an oligonucleotide synthesizer. The protecting groups successfully solubilized the RNA macroinitiator, enabling atom transfer radical polymerization (ATRP) of hydrophobic monomers. As a result, the RNA-polymer hybrids obtained by ATRP exhibited enhanced chemical stability by suppressing cleavage. In addition, we demonstrated evidence of controlled polymerization behavior as well as control over the molecular weight of the hydrophobic polymers grown from RNA. We envision that this methodology will expand the field of RNA-polymer conjugates while vastly enhancing the possibility to alter and engineer the properties of RNA-based polymeric materials.
Collapse
Affiliation(s)
- Jaepil Jeong
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- University
of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| | - Subha R. Das
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Rafique MG, Remington JM, Clark F, Bai H, Toader V, Perepichka DF, Li J, Sleiman HF. Two-Dimensional Supramolecular Polymerization of DNA Amphiphiles is Driven by Sequence-Dependent DNA-Chromophore Interactions. Angew Chem Int Ed Engl 2023; 62:e202217814. [PMID: 36939824 PMCID: PMC10239398 DOI: 10.1002/anie.202217814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/21/2023]
Abstract
Two-dimensional (2D) assemblies of water-soluble block copolymers have been limited by a dearth of systematic studies that relate polymer structure to pathway mechanism and supramolecular morphology. Here, we employ sequence-defined triblock DNA amphiphiles for the supramolecular polymerization of free-standing DNA nanosheets in water. Our systematic modulation of amphiphile sequence shows the alkyl chain core forming a cell membrane-like structure and the distal π-stacking chromophore block folding back to interact with the hydrophilic DNA block on the nanosheet surface. This interaction is crucial to sheet formation, marked by a chiral "signature", and sensitive to DNA sequence, where nanosheets form with a mixed sequence, but not with a homogeneous poly(thymine) sequence. This work opens the possibility of forming well-ordered, bilayer-like assemblies using a single DNA amphiphile for applications in cell sensing, nucleic acid therapeutic delivery and enzyme arrays.
Collapse
Affiliation(s)
| | - Jacob M. Remington
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Finley Clark
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Haochen Bai
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC H3A 0B8, Canada
| | - Violeta Toader
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC H3A 0B8, Canada
| | - Dmytro F. Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC H3A 0B8, Canada
| | - Jianing Li
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Hanadi F. Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC H3A 0B8, Canada
| |
Collapse
|
5
|
Ji J, Hossain MS, Krueger EN, Zhang Z, Nangia S, Carpentier B, Martel M, Nangia S, Mozhdehi D. Lipidation Alters the Structure and Hydration of Myristoylated Intrinsically Disordered Proteins. Biomacromolecules 2023; 24:1244-1257. [PMID: 36757021 PMCID: PMC10017028 DOI: 10.1021/acs.biomac.2c01309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2022] [Revised: 01/25/2023] [Indexed: 02/10/2023]
Abstract
Lipidated proteins are an emerging class of hybrid biomaterials that can integrate the functional capabilities of proteins into precisely engineered nano-biomaterials with potential applications in biotechnology, nanoscience, and biomedical engineering. For instance, fatty-acid-modified elastin-like polypeptides (FAMEs) combine the hierarchical assembly of lipids with the thermoresponsive character of elastin-like polypeptides (ELPs) to form nanocarriers with emergent temperature-dependent structural (shape or size) characteristics. Here, we report the biophysical underpinnings of thermoresponsive behavior of FAMEs using computational nanoscopy, spectroscopy, scattering, and microscopy. This integrated approach revealed that temperature and molecular syntax alter the structure, contact, and hydration of lipid, lipidation site, and protein, aligning with the changes in the nanomorphology of FAMEs. These findings enable a better understanding of the biophysical consequence of lipidation in biology and the rational design of the biomaterials and therapeutics that rival the exquisite hierarchy and capabilities of biological systems.
Collapse
Affiliation(s)
- Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Md Shahadat Hossain
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Emily N. Krueger
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Zhe Zhang
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Shivangi Nangia
- Department
of Chemistry, University of Hartford, West Hartford, Connecticut 06117, United States
| | - Britnie Carpentier
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Mae Martel
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
6
|
Simple Complexity: Incorporating Bioinspired Delivery Machinery within Self-Assembled Peptide Biogels. Gels 2023; 9:gels9030199. [PMID: 36975648 PMCID: PMC10048788 DOI: 10.3390/gels9030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Bioinspired self-assembly is a bottom-up strategy enabling biologically sophisticated nanostructured biogels that can mimic natural tissue. Self-assembling peptides (SAPs), carefully designed, form signal-rich supramolecular nanostructures that intertwine to form a hydrogel material that can be used for a range of cell and tissue engineering scaffolds. Using the tools of nature, they are a versatile framework for the supply and presentation of important biological factors. Recent developments have shown promise for many applications such as therapeutic gene, drug and cell delivery and yet are stable enough for large-scale tissue engineering. This is due to their excellent programmability—features can be incorporated for innate biocompatibility, biodegradability, synthetic feasibility, biological functionality and responsiveness to external stimuli. SAPs can be used independently or combined with other (macro)molecules to recapitulate surprisingly complex biological functions in a simple framework. It is easy to accomplish localized delivery, since they can be injected and can deliver targeted and sustained effects. In this review, we discuss the categories of SAPs, applications for gene and drug delivery, and their inherent design challenges. We highlight selected applications from the literature and make suggestions to advance the field with SAPs as a simple, yet smart delivery platform for emerging BioMedTech applications.
Collapse
|
7
|
Sedighi M, Shrestha N, Mahmoudi Z, Khademi Z, Ghasempour A, Dehghan H, Talebi SF, Toolabi M, Préat V, Chen B, Guo X, Shahbazi MA. Multifunctional Self-Assembled Peptide Hydrogels for Biomedical Applications. Polymers (Basel) 2023; 15:1160. [PMID: 36904404 PMCID: PMC10007692 DOI: 10.3390/polym15051160] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Self-assembly is a growth mechanism in nature to apply local interactions forming a minimum energy structure. Currently, self-assembled materials are considered for biomedical applications due to their pleasant features, including scalability, versatility, simplicity, and inexpensiveness. Self-assembled peptides can be applied to design and fabricate different structures, such as micelles, hydrogels, and vesicles, by diverse physical interactions between specific building blocks. Among them, bioactivity, biocompatibility, and biodegradability of peptide hydrogels have introduced them as versatile platforms in biomedical applications, such as drug delivery, tissue engineering, biosensing, and treating different diseases. Moreover, peptides are capable of mimicking the microenvironment of natural tissues and responding to internal and external stimuli for triggered drug release. In the current review, the unique characteristics of peptide hydrogels and recent advances in their design, fabrication, as well as chemical, physical, and biological properties are presented. Additionally, recent developments of these biomaterials are discussed with a particular focus on their biomedical applications in targeted drug delivery and gene delivery, stem cell therapy, cancer therapy and immune regulation, bioimaging, and regenerative medicine.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853076, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Neha Shrestha
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Biomedicine and Translational Research, Research Institute for Bioscience and Biotechnology, Kathmandu P.O. Box 7731, Nepal
| | - Zahra Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Zahra Khademi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Seyedeh Fahimeh Talebi
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Maryam Toolabi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Bozhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xindong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
8
|
Yonenuma R, Mori H. Synthesis and self-assembly of a diphenylalanine–tetraphenylethylene hybrid monomer and RAFT polymers with aggregation-induced emission. Polym Chem 2023. [DOI: 10.1039/d2py01602h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/11/2023]
Abstract
A hybrid monomer consisting of diphenylalanine with the self-assembling ability and tetraphenylethylene with aggregation-induced emission properties was synthesized and employed for reversible addition–fragmentation chain transfer polymerization.
Collapse
Affiliation(s)
- Ryo Yonenuma
- Department of Organic Material Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa City, Yamagata Prefecture 992-8510, Japan
| | - Hideharu Mori
- Department of Organic Material Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa City, Yamagata Prefecture 992-8510, Japan
| |
Collapse
|
9
|
EF4K bola-amphiphilic peptide nanomembrane: structural, energetic and dynamic properties using molecular dynamics. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
|
10
|
Abstract
Conjugated polymers have been actively studied as an alternative to inorganic semiconductors for their unique optical and electrical properties and low-cost solution processability. However, typical conjugated polymer films contain numerous defects that negatively affect their transport properties, which remains a major issue despite much effort to develop ways to improve the molecular packing structure. In principle, conjugated block copolymers (BCPs) composed of a rod-type conjugated polymer and a coil-type insulating polymer can assemble into various types of ordered nanostructures based on the microphase segregation of two polymer blocks. However, such assembly typically requires a relatively large volume fraction of the coil block or modification of the rod block, both of which tend to impede charge transport. As an alternative, we and others have fabricated nanoscale assemblies of conjugated BCPs via solution-phase self-assembly, which can be used as building blocks for construction of extended nanoarrays of conjugated polymers. In particular, BCPs containing poly(3-hexylthiophene) (P3HT), a conjugated polymer widely used for its high hole mobility, form highly ordered and technologically relevant one-dimensional (1D) nanowires with controlled lengths. A range of well-defined assembly structures such as square plates, ribbons, vesicles, and helices have been prepared from various conjugated BCPs, resembling those of peptide self-assembly, forming diverse nanostructures through combinations of π-π stacking, hydrogen bonding, and hydrophobic interactions.When the self-assembly of P3HT BCPs takes place at an air-water interface, the initially formed polymer nanowires further assemble into hierarchical two-dimensional (2D) nanoarrays with solvent evaporation. The fluidic nature of the water subphase allows fabrication of highly ordered assembly structures from P3HT BCPs with high P3HT content. The ultrathin free-standing film integrated in a field effect transistor (FET) showed orders of magnitude higher current and hole mobility compared to that fabricated by conventional spin-coating. Furthermore, binary self-assembly of a P3HT BCP and quantum dots (QDs) at the air-water interface generates well-ordered 2D films of alternating P3HT nanowires and 1D QD arrays. Unlike coil-coil BCP systems, QDs reside at the interface between P3HT and coil blocks for a broad range of QD sizes due to the strong P3HT packing interactions and the flexible water subphase, forming tight p-n junctions for enhanced photocurrent. Incorporation of magnetic nanoparticles can further improve the degree of order, enabling fabrication of long-range order and direction-controlled P3HT nanoarrays through magnetic-field induced self-assembly.The conjugated BCP approach is highly modular and can be combined with various types of functional molecules, polymers, and nanoparticles, offering a powerful platform for fabrication of functional polymer nanostructures with desired morphologies and properties. This Account introduces recent advances in the self-assembly of π-conjugated BCPs, describes how they differ from prototypical coil-coil type BCPs, and discusses current issues and future outlooks.
Collapse
Affiliation(s)
- Seulki Kang
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Ga-Hyun Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
11
|
Xu M, Zhou B, Ding Y, Du S, Su M, Liu H. Programmable Oligonucleotide-Peptide Complexes: Synthesis and Applications. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-021-1265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/20/2022]
|
12
|
Jin X, Zhang C, Lin J, Cai C, Chen J, Gao L. Fusion Growth of Two-Dimensional Disklike Micelles via Liquid-Crystallization-Driven Self-Assembly. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Jin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengyan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianding Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Kim CJ, Ercole F, Chen J, Pan S, Ju Y, Quinn JF, Caruso F. Macromolecular Engineering of Thermoresponsive Metal-Phenolic Networks. J Am Chem Soc 2021; 144:503-514. [PMID: 34958559 DOI: 10.1021/jacs.1c10979] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Dynamic nanostructured materials that can react to physical and chemical stimuli have attracted interest in the biomedical and materials science fields. Metal-phenolic networks (MPNs) represent a modular class of such materials: these networks form via coordination of phenolic molecules with metal ions and can be used for surface and particle engineering. To broaden the range of accessible MPN properties, we report the fabrication of thermoresponsive MPN capsules using FeIII ions and the thermoresponsive phenolic building block biscatechol-functionalized poly(N-isopropylacrylamide) (biscatechol-PNIPAM). The MPN capsules exhibited reversible changes in capsule size and shell thickness in response to temperature changes. The temperature-induced capsule size changes were influenced by the chain length of biscatechol-PNIPAM and catechol-to-FeIII ion molar ratio. The metal ion type also influenced the capsule size changes, allowing tuning of the MPN capsule mechanical properties. AlIII-based capsules, having a lower stiffness value (10.7 mN m-1), showed a larger temperature-induced size contraction (∼63%) than TbIII-based capsules, which exhibit a higher stiffness value (52.6 mN m-1) and minimal size reduction (<1%). The permeability of the MPN capsules was controlled by changing the temperature (25-50 °C)─a reduced permeability was obtained as the temperature was increased above the lower critical solution temperature of biscatechol-PNIPAM. This temperature-dependent permeability behavior was exploited to encapsulate and release model cargo (500 kDa fluorescein isothiocyanate-tagged dextran) from the capsules; approximately 70% was released over 90 min at 25 °C. This approach provides a synthetic strategy for developing dynamic and thermoresponsive-tunable MPN systems for potential applications in biological science and biotechnology.
Collapse
Affiliation(s)
- Chan-Jin Kim
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Francesca Ercole
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shuaijun Pan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - John F Quinn
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
14
|
Bernal-Chanchavac J, Al-Amin M, Stephanopoulos N. Nanoscale structures and materials from the self-assembly of polypeptides and DNA. Curr Top Med Chem 2021; 22:699-712. [PMID: 34911426 DOI: 10.2174/1568026621666211215142916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/22/2022]
Abstract
The use of biological molecules with programmable self-assembly properties is an attractive route to functional nanomaterials. Proteins and peptides have been used extensively for these systems due to their biological relevance and large number of supramolecular motifs, but it is still difficult to build highly anisotropic and programmable nanostructures due to their high complexity. Oligonucleotides, by contrast, have the advantage of programmability and reliable assembly, but lack biological and chemical diversity. In this review, we discuss systems that merge protein or peptide self-assembly with the addressability of DNA. We outline the various self-assembly motifs used, the chemistry for linking polypeptides with DNA, and the resulting nanostructures that can be formed by the interplay of these two molecules. Finally, we close by suggesting some interesting future directions in hybrid polypeptide-DNA nanomaterials, and potential applications for these exciting hybrids.
Collapse
Affiliation(s)
- Julio Bernal-Chanchavac
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe AZ 85251. United States
| | - Md Al-Amin
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe AZ 85251. United States
| | - Nicholas Stephanopoulos
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe AZ 85251. United States
| |
Collapse
|
15
|
Hendrikse SIS, Contreras-Montoya R, Ellis AV, Thordarson P, Steed JW. Biofunctionality with a twist: the importance of molecular organisation, handedness and configuration in synthetic biomaterial design. Chem Soc Rev 2021; 51:28-42. [PMID: 34846055 DOI: 10.1039/d1cs00896j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
The building blocks of life - nucleotides, amino acids and saccharides - give rise to a large variety of components and make up the hierarchical structures found in Nature. Driven by chirality and non-covalent interactions, helical and highly organised structures are formed and the way in which they fold correlates with specific recognition and hence function. A great amount of effort is being put into mimicking these highly specialised biosystems as biomaterials for biomedical applications, ranging from drug discovery to regenerative medicine. However, as well as lacking the complexity found in Nature, their bio-activity is sometimes low and hierarchical ordering is missing or underdeveloped. Moreover, small differences in folding in natural biomolecules (e.g., caused by mutations) can have a catastrophic effect on the function they perform. In order to develop biomaterials that are more efficient in interacting with biomolecules, such as proteins, DNA and cells, we speculate that incorporating order and handedness into biomaterial design is necessary. In this review, we first focus on order and handedness found in Nature in peptides, nucleotides and saccharides, followed by selected examples of synthetic biomimetic systems based on these components that aim to capture some aspects of these ordered features. Computational simulations are very helpful in predicting atomic orientation and molecular organisation, and can provide invaluable information on how to further improve on biomaterial designs. In the last part of the review, a critical perspective is provided along with considerations that can be implemented in next-generation biomaterial designs.
Collapse
Affiliation(s)
- Simone I S Hendrikse
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia. .,School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Pall Thordarson
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | |
Collapse
|
16
|
Kim CJ, Kim GH, Jeong EH, Lee H, Park SJ. The core composition of DNA block copolymer micelles dictates DNA hybridization properties, nuclease stabilities, and cellular uptake efficiencies. NANOSCALE 2021; 13:13758-13763. [PMID: 34477650 DOI: 10.1039/d1nr00756d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
Here, we report how the nature of the hydrophobic core affects the molecular interactions of DNA block copolymer assemblies. Three different amphiphilic DNA block copolymers, DNA-b-polystyrene (DNA-b-PS), DNA-b-poly(2-vinylpyridine) (DNA-b-P2VP), and DNA-b-poly(methyl acrylate) (DNA-b-PMA) were synthesized and assembled into spherical micelles composed of a hydrophobic polymer core and DNA corona. Interestingly, DNA block copolymer micelles having different hydrophobic cores exhibited markedly different molecular and biological interactions. DNA-b-PS exhibited higher melting temperature, sharper melting transition, higher stability to nuclease-catalyzed DNA degradation, and higher cellular uptake efficiency compared to DNA-b-P2VP and DNA-b-PMA. The investigation of the self-assembly behavior revealed a much higher aggregation number and DNA density for DNA-b-PS micelles, which explains the superior properties of DNA-b-PS. These results demonstrate that the type of the hydrophobic core polymer, which has been largely overlooked, has a profound impact on the molecular and biological interactions of the DNA shell.
Collapse
Affiliation(s)
- Chan-Jin Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | | | | | | | | |
Collapse
|
17
|
Albert SK, Lee S, Durai P, Hu X, Jeong B, Park K, Park SJ. Janus Nanosheets with Face-Selective Molecular Recognition Properties from DNA-Peptide Conjugates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006110. [PMID: 33721400 DOI: 10.1002/smll.202006110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/30/2020] [Revised: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Chemical and functional anisotropy in Janus materials offer intriguing possibilities for constructing complex nanostructures and regulating chemical and biological reactions. Here, the authors report the fabrication of Janus nanosheets from molecular building blocks composed of two information-carrying biopolymers, DNA and peptides. Experimental and structural modeling studies reveal that DNA-peptide diblock conjugates assemble into Janus nanosheets with distinct DNA and peptide faces. The surprising level of structural control is attributed to the exclusive parallel β-sheet formation of phenylalanine-rich peptides. This approach is extended to triblock DNA1-peptide-DNA2 conjugates, which assemble into nanosheets presenting two different DNA on opposite faces. The Janus nanosheets with independently addressable faces are utilized to organize an enzyme pair for concerted enzymatic reactions, where enhanced catalytic activities are observed. These results demonstrate that the predictable and designable peptide interaction is a promising tool for creating Janus nanostructures with regio-selective and sequence-specific molecular recognition properties.
Collapse
Affiliation(s)
- Shine K Albert
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea
| | - Sunghee Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea
| | - Prasannavenkatesh Durai
- KIST Gangneung Institute of Natural Products, 679, Saimdang-ro, Gangneung-si, Gangwon-do, 25451, South Korea
| | - Xiaole Hu
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea
| | - Keunwan Park
- KIST Gangneung Institute of Natural Products, 679, Saimdang-ro, Gangneung-si, Gangwon-do, 25451, South Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea
| |
Collapse
|
18
|
Albert SK, Golla M, Krishnan N, Perumal D, Varghese R. DNA-π Amphiphiles: A Unique Building Block for the Crafting of DNA-Decorated Unilamellar Nanostructures. Acc Chem Res 2020; 53:2668-2679. [PMID: 33052654 DOI: 10.1021/acs.accounts.0c00492] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Abstract
The unparalleled ability of DNA to recognize its complementary strand through Watson and Crick base pairing is one of the most reliable molecular recognition events found in natural systems. This highly specific sequence information encoded in DNA enables it to be a versatile building block for bottom-up self-assembly. Hence, the decoration of functional nanostructures with information-rich DNA is extremely important as this allows the integration of other functional molecules onto the surface of the nanostructures through DNA hybridization in a highly predictable manner. DNA amphiphiles are a class of molecular hybrids where a short hydrophilic DNA is conjugated to a hydrophobic moiety. Since DNA amphiphiles comprise DNA as the hydrophilic segment, their self-assembly in aqueous medium always results in the formation of nanostructures with shell made of DNA. This clearly suggests that self-assembly of DNA amphiphiles is a straightforward strategy for the ultradense decoration of a nanostructure with DNA. However, initial attempts toward the design of DNA amphiphiles were primarily focused on long flexible hydrocarbon chains as the hydrophobic moiety, and it has been demonstrated in several examples that they typically self-assemble into DNA-decorated micelles (spherical or cylindrical). Hence, molecular level control over the self-assembly of DNA amphiphiles and achieving diverse morphologies was extremely challenging and unrealized until recently.In this Account, we summarize our recent efforts in the area of self-assembly of DNA amphiphiles and narrate the remarkable effect of the incorporation of a large π-surface as the hydrophobic domain in the self-assembly of DNA amphiphiles. Self-assembly of DNA amphiphiles with flexible hydrocarbon chains as the hydrophobic moiety is primarily driven by the hydrophobic effect. The morphology of such nanostructures is typically predicted based on the volume ratio of hydrophobic to hydrophilic segments. However, control over the self-assembly and prediction of the morphology become increasingly challenging when the hydrophobic moieties can interact with each other through other noncovalent interactions. In this Account, the unique self-assembly behaviors of DNA-π amphiphiles, where a large π-surface acts as the hydrophobe, are described. Due to the extremely strong π-π stacking in aqueous medium, the assembly of the amphiphile is found to preferably proceed in a lamellar fashion (bilayer) and hence the morphology of the nanostructures can easily be tuned by the structural modification of the π-surface. Design principles for crafting various DNA-decorated lamellar nanostructures including unilamellar vesicles, two-dimensional (2D) nanosheets, and helically twisted nanoribbons by selecting suitable π-surfaces are discussed. Unilamellar vesicular nanostructures were achieved by using linear oligo(phenylene ethynylene) (OPE) as the hydrophobic segment, where lamellar assembly undergoes folding to form unilamellar vesicles. The replacement of OPE with a strongly π-stacking hydrophobe such as hexabenzocoronene (HBC) or tetraphenylethylene (TPE) provides extremely strong π-stacking compared to OPE, which efficiently directed the 2D growth for the lamellar assembly and led to the formation of 2D nanosheets. A helical twist in the lamella was achieved by the replacement of HBC with hexaphenylbenzene (HPB), which is the twisted analogue of HBC, directing the assembly into helically twisted nanoribbons. The most beneficial structural feature of this kind of nanostructure is the extremely dense decoration of their surface with ssDNA, which can further be used for DNA-directed organization of other functional nanomaterials. By exploring this, their potential as a nanoscaffold for predefined assembly of plasmonic nanomaterials into various plasmonic 1D, 2D, and 3D nanostructures through DNA hybridization is discussed. Moreover, the design of pH-responsive DNA-based vesicles and their application as a nanocarrier for payload delivery is also demonstrated.
Collapse
Affiliation(s)
- Shine K. Albert
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum, 695551 Kerala, India
| | - Murali Golla
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum, 695551 Kerala, India
| | - Nthiyanandan Krishnan
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum, 695551 Kerala, India
| | - Devanathan Perumal
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum, 695551 Kerala, India
| | - Reji Varghese
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum, 695551 Kerala, India
| |
Collapse
|
19
|
Merg AD, Touponse G, Genderen EV, Blum TB, Zuo X, Bazrafshan A, Siaw HMH, McCanna A, Brian Dyer R, Salaita K, Abrahams JP, Conticello VP. Shape-Shifting Peptide Nanomaterials: Surface Asymmetry Enables pH-Dependent Formation and Interconversion of Collagen Tubes and Sheets. J Am Chem Soc 2020; 142:19956-19968. [DOI: 10.1021/jacs.0c08174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andrea D. Merg
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Gavin Touponse
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | | | | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Alisina Bazrafshan
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hew Ming Helen Siaw
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Arthur McCanna
- The Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia 30322, United States
| | - R. Brian Dyer
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jan Pieter Abrahams
- Paul Scherrer Institut, CH-5232 Villigen, Switzerland
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland
| | | |
Collapse
|
20
|
Lv Z, Jiang R, Chen J, Chen W. Nanoparticle-mediated gene transformation strategies for plant genetic engineering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:880-891. [PMID: 32860436 DOI: 10.1111/tpj.14973] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/05/2020] [Accepted: 08/10/2020] [Indexed: 05/05/2023]
Abstract
Plant genetic engineering, a recent technological advancement in the field of plant science, is an important tool used to improve crop quality and yield, to enhance secondary metabolite content in medicinal plants or to develop crops for sustainable agriculture. A new approach based on nanoparticle-mediated gene transformation can overcome the obstacle of the plant cell wall and accurately transfer DNA or RNA into plants to produce transient or stable transformation. In this review, several nanoparticle-based approaches are discussed, taking into account recent advances and challenges to hint at potential applications of these approaches in transgenic plant improvement programs. This review also highlights challenges in implementing the nanoparticle-based approaches used in plant genetic engineering. A new technology that improves gene transformation efficiency and overcomes difficulties in plant regeneration has been established and will be used for the de novo production of transgenic plants, and CRISPR/Cas9 genome editing has accelerated crop improvement. Therefore, we outline future perspectives based on combinations of genome editing, nanoparticle-mediated gene transformation and de novo regeneration technologies to accelerate crop improvement. The information provided here will assist an effective exploration of the technological advances in plant genetic engineering to support plant breeding and important crop improvement programs.
Collapse
Affiliation(s)
- Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Rui Jiang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Junfeng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| |
Collapse
|