1
|
Wang H, Li C, Liu M, Dou D, Chen L, Zhang L, Zhao Q, Cong Y, Wang Y. Engineering both intrinsic characteristic and local microenvironment of platinum sites toward highly efficient oxygen reduction reaction. J Colloid Interface Sci 2024; 675:915-925. [PMID: 39002241 DOI: 10.1016/j.jcis.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
The optimization of the adsorption of oxygen-containing intermediates on platinum (Pt) sites of Pt-based electrocatalysts is crucial for the oxygen reduction reaction process. Currently, a large amount of researches mainly focus on modifying the bulk structure of the electrocatalysts, however, the vital role of solvent effect on the phase interfaces is often overlooked. Here, we successfully developed an electrocatalyst in which the ordered PtCo alloy anchors on the cobalt (Co) single-atoms/clusters decorated support (Co1,nNC) and its surface is further optimized using hydrophobic ionic liquid (IL). Experimental studies and theoretical calculations indicate that compressive stress on Pt lattice contributed by intrinsic structure and the local hydrophobicity caused by IL on the surface can suppress the stabilization of *OH on Pt. This synergistic effect affords outstanding catalytic performance, exhibiting a half-wave potential (E1/2) of 0.916 V vs. RHE and a mass activity (MA) of 1350.3 mA mgPt-1 in 0.1 mol/L perchloric acid (0.1 M HClO4) electrolyte, much better than the commercial Pt/C (0.849 V vs. RHE and 145.5 mA mgPt-1 for E1/2 and MA, respectively). Moreover, the E1/2 of IL-PtCo/Co1,nNC only lost 5 mV after 10,000 cyclic voltammetry (CV) cycles due to a strong and synergistic contact of the intermetallic PtCo alloy with the Co1,nNC support and IL. This research provides an effective method for designing efficient electrocatalysts by combining intrinsic structure and surface modification.
Collapse
Affiliation(s)
- Haibin Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Chunlei Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Mengling Liu
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Di Dou
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Luyun Chen
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Limin Zhang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Qiuping Zhao
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Yuanyuan Cong
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China.
| | - Yi Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| |
Collapse
|
2
|
Chen W, Guo W, Liu Z, Dang W, Wang J, Cheng M, Zhang Q. Modulating Electrochemical Energy Storage and Multi-Spectra Defense of MXenes by Interfacial Dual-Filler Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404119. [PMID: 39073210 DOI: 10.1002/smll.202404119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Indexed: 07/30/2024]
Abstract
MXenes have attracted growing interest in electrochemical energy storage owing to their high electronic conductivity and editable surface chemistry. Besides, rendering MXenes with spectrum defense properties further broadens their versatile applications. However, the development of MXenes suffers from weak van der Waal interaction-driven self-restacking that leads to random alignment and inferior interface microenvironments. Herein, a nacre-inspired MXene film is tailored by dual-filling of 2-ureido-4[1H]-pyrimidinone (UPy)-modified polyvinyl alcohol (PVA-UPy) and carbon nanotubes (CNTs). The dual-nanofillers engineering endows the nanocomposite film with a highly ordered structure (a Herman's order value of 0.838), a high mechanical strength (139.5 MPa), and continuous conductive pathways of both the ab plane and c-axis. As a proof-of-concept, the tailored nanocomposite film achieves a considerable capacitance of 508.2 F cm-3 and long-term cycling stability without performance degradation for 10 000 cycles. It is efficient for spectra defense in radar and infrared bands, displaying a high electromagnetic shielding capacity (19186 dB cm2 g-1) and a super-low infrared (IR) emissivity (0.16), with negligible performance decay after saving in the air for 1 year, responsible for the applications in specific and complex conditions. This interfacial dual-filler engineering concept showcases effective nanotechnology toward sustainable energy applications with a long lifetime and safety.
Collapse
Affiliation(s)
- Wenting Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zongxu Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wanbin Dang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jinxin Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Mengting Cheng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
3
|
Cai W, He X, Ye TN, Hu X, Liu C, Sasase M, Kitano M, Kamiya T, Hosono H, Wu J. Discovery of Self-Assembled 2D Ru/Si Superlattices Boosting Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402357. [PMID: 38881321 DOI: 10.1002/smll.202402357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/25/2024] [Indexed: 06/18/2024]
Abstract
2D heterostructuring is a versatile methodology for designing nanoarchitecture catalytic systems that allow for reconstruction and modulation of interfaces and electronic structures. However, catalysts with such structures are extremely scarce due to limited synthetic strategies. Here, a highly ordered 2D Ru/Si/Ru/Si… nano-heterostructures (RSHS) is reported by acid etching of the LaRuSi electride. RSHS shows a superior electrocatalytic activity for hydrogen evolution with an overpotential of 14 mV at 10 mA cm-2 in alkaline media. Both experimental analyses and first-principles calculations demonstrate that the electronic states of Ru can be tuned by strong interactions of the interfacial Ru-Si, leading to an optimized hydrogen adsorption energy. Moreover, due to the synergistic effect of Ru and Si, the energy barrier of water dissociation is significantly reduced. The well-organized superlattice structure will provide a paradigm for construction of efficient catalysts with tunable electronic states and dual active sites.
Collapse
Affiliation(s)
- Weizheng Cai
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinyi He
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Tian-Nan Ye
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinmeng Hu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuanlong Liu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Masato Sasase
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Masaaki Kitano
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Toshio Kamiya
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Hideo Hosono
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Jiazhen Wu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
He L, Zhuang H, Fan Q, Yu P, Wang S, Pang Y, Chen K, Liang K. Advances and challenges in MXene-based electrocatalysts: unlocking the potential for sustainable energy conversion. MATERIALS HORIZONS 2024; 11:4239-4255. [PMID: 39188198 DOI: 10.1039/d4mh00845f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
MXenes, a novel class of two-dimensional materials, have garnered significant attention for their promising electrocatalytic properties in various energy conversion applications such as water splitting, fuel cells, metal-air batteries, and nitrogen reduction reactions. Their excellent electrical conductivity, high specific surface area, and versatile surface chemistry enable exceptional catalytic performance. This review highlights recent advancements in the design and application strategies of MXenes as electrocatalysts, focusing on key reactions including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and nitrogen reduction reaction (NRR). We discuss the tunability of MXenes' layered structures and surface properties through surface modification, MXene lattice substitution, defect and morphology engineering, and heterostructure construction. Despite the considerable progress, MXenes face challenges such as restacking during catalysis, stability issues, and difficulties in large-scale production. Addressing these challenges through innovative engineering approaches and advancing industrial synthesis techniques is crucial for the broader application of MXene-based materials. Our review underscores the potential of MXenes in transforming electrocatalytic processes and highlights future research directions to optimize their catalytic efficiency and stability.
Collapse
Affiliation(s)
- Lei He
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Haizheng Zhuang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Qi Fan
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Ping Yu
- School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Shengchao Wang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Yifan Pang
- Department of Materials Science and Engineering, the Ohio State University, Columbus, OH 43210, USA
| | - Ke Chen
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Qianwan Institute of CNITECH, Ningbo 315336, China
| | - Kun Liang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Qianwan Institute of CNITECH, Ningbo 315336, China
| |
Collapse
|
5
|
Li H, Cai Q, Wang Y, Jie G, Zhou H. Spatial-Potential-Color-Resolved Bipolar Electrode Electrochemiluminescence Biosensor Using a CuMoOx Electrocatalyst for the Simultaneous Detection and Imaging of Tetracycline and Lincomycin. Anal Chem 2024; 96:7073-7081. [PMID: 38663374 DOI: 10.1021/acs.analchem.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A spatial-potential-color-resolved bipolar electrode electrochemiluminescence biosensor (BPE-ECL) using a CuMoOx electrocatalyst was constructed for the simultaneous detection and imaging of tetracycline (TET) and lincomycin (LIN). HOF-101 emitted peacock blue light under positive potential scanning, and CdSe quantum dots (QDs) emitted green light under negative potential scanning. CuMoOx could catalyze the electrochemical reduction of H2O2 to greatly increase the Faradic current of BPE and realize the ECL signal amplification. In channel 1, CuMoOx-Aptamer II (TET) probes were introduced into the BPE hole (left groove A) by the dual aptamer sandwich method of TET. During positive potential scanning, the polarity of BPE (left groove A) was negative, resulting in the electrochemical reduction of H2O2 catalyzed by CuMoOx, and the ECL signal of HOF-101 was enhanced for detecting TET. In channel 2, CuMoOx-Aptamer (LIN) probes were adsorbed on the MXene of the driving electrode (DVE) hole (left groove B) by hydrogen-bonding and metal-chelating interactions. LIN bound with its aptamers, causing CuMoOx to fall off. During negative potential scanning, the polarity of DVE (left groove B) was negative and the Faradic current decreased. The ECL signal of CdSe QDs was reduced for detecting LIN. Furthermore, a portable mobile phone imaging platform was built for the colorimetric (CL) detection of TET and LIN. Thus, the multiple mode-resolved detection of TET and LIN could be realized simultaneously with only one potential scan, which greatly improved detection accuracy and efficiency. This study opened a new technology of BPE-ECL sensor application and is expected to shine in microchips and point-of-care testing (POCT).
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qianqian Cai
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yuehui Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guifen Jie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hong Zhou
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
6
|
Cao Y, Sun Y, Wang H, Li X, Wang Q, Si W, Lan W, Wang F, Han N. Fundamental understanding of nitrogen in biomass electrocatalysts for oxygen reduction and zinc-air batteries. iScience 2024; 27:108913. [PMID: 38318364 PMCID: PMC10839687 DOI: 10.1016/j.isci.2024.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Exploring high-efficiency catalysts for oxygen reduction reactions (ORRs) is essential for the development of large-scale applications of fuel cell and metal-air batteries technology. The as-prepared Fe-NC-800 via polymerization-pyrolysis strategy exhibited superior ORR activity with onset potential of 1.030 V vs. reversible hydrogen electrode (RHE) and half-wave potential of 0.908 V vs. RHE, which is higher than that of the Pt/C catalyst and most of other Fe-based catalysts. The different d-band center values can be attributed to the influence of different N-doped carbon, leading to the adjustment in the ORR activity. In addition, Fe-NC-800-based Zn-air battery showed better electrochemical performance with a high discharge specific capacity of 806 mA h g-1 and a high-power density of 220 mW cm-2 than that of the Pt/C-based battery. Therefore, the biomass Fe-NC-800 catalyst may become a promising substitute for Pt/C catalysts in energy storage and conversion devices.
Collapse
Affiliation(s)
- Yue Cao
- School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yegeng Sun
- School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Haowei Wang
- Shandong Sunway Chemical Group Co., Ltd, Zibo 255000, China
| | - Xue Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Qing Wang
- School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Weimeng Si
- School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Wentao Lan
- School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Fagang Wang
- School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| |
Collapse
|
7
|
Ma J, Zhang W, Yang F, Zhang Y, Xu X, Liu G, Xu H, Liu G, Wang Z, Pei S. Preparation of Fe-BN-C catalysts derived from ZIF-8 and their performance in the oxygen reduction reaction. RSC Adv 2024; 14:4607-4613. [PMID: 38318614 PMCID: PMC10839553 DOI: 10.1039/d3ra07188j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Enhancing the oxygen reduction reaction (ORR) activity and stability of the fuel cell cathode electrocatalysts and reducing their costs are critical. In response to this need, Fe, B, and N co-doped hollow mesoporous carbon materials were prepared by a simple chemical doping one-step pyrolysis method using ZIF-8 as a precursor. The results showed that the optimized catalyst displayed a higher limiting current density (6.154 mA cm-2) and half-wave potential (0.859 V), which showed significant enhancement compared with the Pt/C catalyst (5.487 mA cm-2 and 0.853 V). Moreover, the optimized catalyst had outstanding long-term stability with a current density retention higher than 91% after 36 000 s of stability testing. This work provides a facile strategy for the design of outstanding ORR performance of non-precious metal oxygen reduction catalysts.
Collapse
Affiliation(s)
- Jialu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Wei Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Feng Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Yingge Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Xiaojun Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Guipeng Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Huiyu Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Gaochong Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Zhihui Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Supeng Pei
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| |
Collapse
|
8
|
Wang P, Wang B, Wang R. Progress in the Synthesis Process and Electrocatalytic Application of MXene Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6816. [PMID: 37895797 PMCID: PMC10608629 DOI: 10.3390/ma16206816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023]
Abstract
With their rich surface chemistry, high electrical conductivity, variable bandgap, and thermal stability, 2D materials have been developed for effective electrochemical energy conversion systems over the past decade. Due to the diversity brought about by the use of transition metals and C/N pairings, the 2D material MXene has found excellent applications in many fields. Among the various applications, many breakthroughs have been made in electrocatalytic applications. Nevertheless, related studies on topics such as the factors affecting the material properties and safer and greener preparation methods have not been reported in detail. Therefore, in this paper, we review the relevant preparation methods of MXene and the safer, more environmentally friendly preparation techniques in detail, and summarize the progress of research on MXene-based materials as highly efficient electrocatalysts in the electrocatalytic field of hydrogen precipitation reaction, nitrogen reduction reaction, oxygen precipitation reaction, oxygen reduction reaction, and carbon dioxide reduction reaction. We also discuss the technology related to MXene materials for hydrogen storage. The main challenges and opportunities for MXene-based materials, which constitute a platform for next-generation electrocatalysis in basic research and practical applications, are highlighted. This paper aims to promote the further development of MXenes and related materials for electrocatalytic applications.
Collapse
Affiliation(s)
- Peng Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Bingquan Wang
- School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
9
|
Li L, Liu Z, Jiang D, Song M, Wang Y. Bimetallic CoSn nanoparticles anchored on N-doped carbon as antibacterial oxygen reduction catalysts for microbial fuel cells. NANOSCALE 2023; 15:15739-15748. [PMID: 37740420 DOI: 10.1039/d3nr03504b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Sluggish oxygen reduction reaction (ORR) kinetics and biofilm formation limit the power generation and stability of microbial fuel cells (MFCs). Herein, bimetallic CoSn nanoparticles anchored on ZIF-derived N-doped carbon (CoSn@NC) were designed and synthesized as bifunctional catalysts to accelerate the ORR and improve the antibacterial activity. Sn modulated the electronic structure of bimetallic CoSn by drawing electrons from Co. Electron redistribution of CoSn@NC optimized the O2 adsorption at Co sites for rapid ORR kinetics. The up-shifted d-band center of Co sites reduced the energy barrier of the rate-determining step for *O formation, resulting in efficient catalytic activity. Bimetallic CoSn nanoparticles were beneficial for the four-electron transfer process for more ˙OH species production. Sn2+ and ˙OH synergistically improved the antibacterial activity of CoSn@NC to inhibit the growth of the cathode biofilm and accelerate mass-charge transfer. CoSn@NC demonstrated superior oxygen reduction activity with a half-wave potential of 0.84 V and an onset potential of 0.90 V, respectively. The MFCs assembled with the CoSn@NC cathodic catalyst exhibited an excellent power density of 1380 mW m-2 and long-term stability for 105 h. This work provides a strategy for the design of antibacterial ORR catalysts for improved catalytic activity and long-term stability.
Collapse
Affiliation(s)
- Liang Li
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
- Yangtze River Delta Carbon Neutrality Strategy Development Institute, Southeast University, Nanjing 210096, China
| | - Zequan Liu
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Demin Jiang
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Min Song
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yuqiao Wang
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
- Yangtze River Delta Carbon Neutrality Strategy Development Institute, Southeast University, Nanjing 210096, China
| |
Collapse
|
10
|
Qi C, Yang H, Sun Z, Wang H, Xu N, Zhu G, Wang L, Jiang W, Yu X, Li X, Xiao Q, Qiu P, Luo W. Modulating Electronic Structures of Iron Clusters through Orbital Rehybridization by Adjacent Single Copper Sites for Efficient Oxygen Reduction. Angew Chem Int Ed Engl 2023; 62:e202308344. [PMID: 37485998 DOI: 10.1002/anie.202308344] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
The atom-cluster interaction has recently been exploited as an effective way to increase the performance of metal-nitrogen-carbon catalysts for oxygen reduction reaction (ORR). However, the rational design of such catalysts and understanding their structure-property correlations remain a great challenge. Herein, we demonstrate that the introduction of adjacent metal (M)-N4 single atoms (SAs) could significantly improve the ORR performance of a well-screened Fe atomic cluster (AC) catalyst by combining density functional theory (DFT) calculations and experimental analysis. The DFT studies suggest that the Cu-N4 SAs act as a modulator to assist the O2 adsorption and cleavage of O-O bond on the Fe AC active center, as well as optimize the release of OH* intermediates to accelerate the whole ORR kinetic. The depositing of Fe AC with Cu-N4 SAs on nitrogen doped mesoporous carbon nanosheet are then constructed through a universal interfacial monomicelles assembly strategy. Consistent with theoretical predictions, the resultant catalyst exhibits an outstanding ORR performance with a half-wave potential of 0.92 eV in alkali and 0.80 eV in acid, as well as a high power density of 214.8 mW cm-2 in zinc air battery. This work provides a novel strategy for precisely tuning the atomically dispersed poly-metallic centers for electrocatalysis.
Collapse
Affiliation(s)
- Chunhong Qi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Haoyu Yang
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| | - Ziqi Sun
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| | - Haifeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Na Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Guihua Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Xiqian Yu
- Beijing Advanced Innovation Center for Materials, Genome Engineering, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Qi Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Pengpeng Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
11
|
Xie H, Jiang D, Chen H, Ma X, Liu X, Qi Q, Wang Y. Electron transfer and surface activity of NiCoP-wrapped MXene: cathodic catalysts for the oxygen reduction reaction. NANOSCALE 2023; 15:7430-7437. [PMID: 37000575 DOI: 10.1039/d3nr00192j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
NiCoP constructed on a conductive substrate can achieve efficient oxygen reduction reaction (ORR) catalytic activity. Herein, we report the in-situ growth of NiCoP on the surface of an MXene nanosheet (MXene@NiCoP). The MXene nanosheet accelerated the electron transfer and enhanced the surface activity of the NiCoP. Density functional theory calculations indicated that MXene@NiCoP possessed the advantages of a low overpotential and high OH* adsorption energy in the ORR process. MXene@NiCoP proved to be a highly active catalyst for the ORR with a half-wave potential of 0.71 V vs. RHE. The assembled single-chamber air-cathode microbial fuel cell obtained high electricity generation performance.
Collapse
Affiliation(s)
- Hao Xie
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Demin Jiang
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Huina Chen
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Xiaoshuang Ma
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Xiaojin Liu
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Qi Qi
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Yuqiao Wang
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
12
|
Shuai TY, Zhan QN, Xu HM, Huang CJ, Zhang ZJ, Li GR. Recent advances in the synthesis and electrocatalytic application of MXene materials. Chem Commun (Camb) 2023; 59:3968-3999. [PMID: 36883557 DOI: 10.1039/d2cc06418a] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
MXenes are a class of two-dimensional materials with a graphene-like structure, which have excellent optical, biological, thermodynamic, electrical and magnetic properties. Due to the diversity resulting from the combination of transition metals and C/N, the MXene family has expanded to more than 30 members and been applied in many fields with broad application prospects. Among their applications, electrocatalytic applications have achieved many breakthroughs. Therefore, in this review, we summarize the reports on the preparation of MXenes and their application in electrocatalysis published in the last five years and describe the two main methods for the preparation of MXenes, i.e., bottom-up and top to bottom synthesis. Different methods may change the structure or surface termination of MXenes, and accordingly affect their electrocatalytic performance. Furthermore, we highlight the application of MXenes in the electrocatalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), and multi-functionalization. It can be concluded that the electrocatalytic properties of MXenes can be modified by changing the type of functional groups or doping. Also, MXenes can be compounded with other materials to produce electronic coupling and improve the catalytic activity and stability of the resulting composites. In addition, Mo2C and Ti3C2 are two types of MXene materials that have been widely studied in the field of electrocatalysis. At present, research on the synthesis of MXenes is focused on carbides, whereas research on nitrides is rare, and there are no synthesis methods meeting the requirements of green, safety, high efficiency and industrialization simultaneously. Therefore, it is very important to explore environmentally friendly industrial production routes and devote more research efforts to the synthesis of MXene nitrides.
Collapse
Affiliation(s)
- Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
13
|
Xing F, Ji G, Li Z, Zhong W, Wang F, Liu Z, Xin W, Tian J. Preparation, properties and applications of two-dimensional superlattices. MATERIALS HORIZONS 2023; 10:722-744. [PMID: 36562255 DOI: 10.1039/d2mh01206e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a combination concept of a 2D material and a superlattice, two-dimensional superlattices (2DSs) have attracted increasing attention recently. The natural advantages of 2D materials in their properties, dimension, diversity and compatibility, and their gradually improved technologies for preparation and device fabrication serve as solid foundations for the development of 2DSs. Compared with the existing 2D materials and even their heterostructures, 2DSs relate to more materials and elaborate architectures, leading to novel systems with more degrees of freedom to modulate material properties at the nanoscale. Here, three typical types of 2DSs, including the component, strain-induced and moiré superlattices, are reviewed. The preparation methods, properties and state-of-the-art applications of each type are summarized. An outlook of the challenges and future developments is also presented. We hope that this work can provide a reference for the development of 2DS-related research.
Collapse
Affiliation(s)
- Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Guangmin Ji
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Zongwen Li
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Weiheng Zhong
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Feiyue Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhibo Liu
- Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Teda Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China.
| | - Wei Xin
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Jianguo Tian
- Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Teda Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
14
|
Sun Y, Qin T, Liu X, Liu Y, Zhao D, Wong DKY. A High-Performance Hybrid Biofuel Cell with a Honeycomb-Like Ti 3 C 2 T x /MWCNT/AuNP Bioanode and a ZnCo 2 @NCNT Cathode for Self-Powered Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206257. [PMID: 36549673 DOI: 10.1002/smll.202206257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
This work focusses on developing a hybrid enzyme biofuel cell-based self-powered biosensor with appreciable stability and durability using murine leukemia fusion gene fragments (tDNA) as a model analyte. The cell consists of a Ti3 C2 Tx /multiwalled carbon nanotube/gold nanoparticle/glucose oxidase bioanode and a Zn/Co-modified carbon nanotube cathode. The bioanode uniquely exhibits strong electron transfer ability and a high surface area for the loading of 1.14 × 10-9 mol cm-2 glucose oxidase to catalyze glucose oxidation. Meanwhile, the abiotic cathode with a high oxygen reduction reaction activity negates the use of conventional bioenzymes as catalysts, which aids in extending the stability and durability of the sensing system. The biosensor offers a 0.1 fm-1 nm linear range and a detection limit of 0.022 fm tDNA. Additionally, the biosensor demonstrates a reproducibility of ≈4.85% and retains ≈87.42% of the initial maximal power density after a 4-week storage at 4 °C, verifying a significantly improved long-term stability.
Collapse
Affiliation(s)
- Yuping Sun
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan Province, 475004, P. R. China
| | - Tengteng Qin
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan Province, 475004, P. R. China
| | - Xiaoqiang Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan Province, 475004, P. R. China
| | - Yuan Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan Province, 475004, P. R. China
| | - Dan Zhao
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan Province, 475004, P. R. China
| | - Danny K Y Wong
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
15
|
Li D, Yin G, Li Z. Detection of non-small cell lung cancer marker CYFRA21-1 via Mxene-based immunoelectrochemical sensor. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
16
|
Yu H, Dai M, Zhang J, Chen W, Jin Q, Wang S, He Z. Interface Engineering in 2D/2D Heterogeneous Photocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205767. [PMID: 36478659 DOI: 10.1002/smll.202205767] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/06/2022] [Indexed: 06/17/2023]
Abstract
Assembling different 2D nanomaterials into heterostructures with strong interfacial interactions presents a promising approach for novel artificial photocatalytic materials. Chemically implementing the 2D nanomaterials' construction/stacking modes to regulate different interfaces can extend their functionalities and achieve good performance. Herein, based on different fundamental principles and photochemical processes, multiple construction modes (e.g., face-to-face, edge-to-face, interface-to-face, edge-to-edge) are overviewed systematically with emphasis on the relationships between their interfacial characteristics (e.g., point, linear, planar), synthetic strategies (e.g., in situ growth, ex situ assembly), and enhanced applications to achieve precise regulation. Meanwhile, recent efforts for enhancing photocatalytic performances of 2D/2D heterostructures are summarized from the critical factors of enhancing visible light absorption, accelerating charge transfer/separation, and introducing novel active sites. Notably, the crucial roles of surface defects, cocatalysts, and surface modification for photocatalytic performance optimization of 2D/2D heterostructures are also discussed based on the synergistic effect of optimization engineering and heterogeneous interfaces. Finally, perspectives and challenges are proposed to emphasize future opportunities for expanding 2D/2D heterostructures for photocatalysis.
Collapse
Affiliation(s)
- Huijun Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Meng Dai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jing Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Wenhan Chen
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Qiu Jin
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zuoli He
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
17
|
Zhang Z, Liu P, Song Y, Hou Y, Xu B, Liao T, Zhang H, Guo J, Sun Z. Heterostructure Engineering of 2D Superlattice Materials for Electrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204297. [PMID: 36266983 PMCID: PMC9762311 DOI: 10.1002/advs.202204297] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Exploring low-cost and high-efficient electrocatalyst is an exigent task in developing novel sustainable energy conversion systems, such as fuel cells and electrocatalytic fuel generations. 2D materials, specifically 2D superlattice materials focused here, featured highly accessible active areas, high density of active sites, and high compatibility with property-complementary materials to form heterostructures with desired synergetic effects, have demonstrated to be promising electrocatalysts for boosting the performance of sustainable energy conversion and storage devices. Nevertheless, the reaction kinetics, and in particular, the functional mechanisms of the 2D superlattice-based catalysts yet remain ambiguous. In this review, based on the recent progress of 2D superlattice materials in electrocatalysis applications, the rational design and fabrication of 2D superlattices are first summarized and the application of 2D superlattices in electrocatalysis is then specifically discussed. Finally, perspectives on the current challenges and the strategies for the future design of 2D superlattice materials are outlined. This review attempts to establish an intrinsic correlation between the 2D superlattice heterostructures and the catalytic properties, so as to provide some insights into developing high-performance electrocatalysts for next-generation sustainable energy conversion and storage.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Peizhi Liu
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Yanhui Song
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Ying Hou
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
- Materials Institute of Atomic and Molecular ScienceShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Ting Liao
- School of MechanicalMedical and Process EngineeringQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Haixia Zhang
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Ziqi Sun
- School of Chemistry and PhysicsQueensland University of TechnologyBrisbaneQLD4000Australia
| |
Collapse
|
18
|
Fabrication and cytotoxicity evaluation of polyethyleneimine conjugated fluorescent MXene nanosheets as cancer theranostics agent. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
19
|
Xiao S, Zheng Y, Wu X, Zhou M, Rong X, Wang L, Tang Y, Liu X, Qiu L, Cheng C. Tunable Structured MXenes With Modulated Atomic Environments: A Powerful New Platform for Electrocatalytic Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203281. [PMID: 35989101 DOI: 10.1002/smll.202203281] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Owing to their rich surface chemistry, high conductivity, tunable bandgap, and thermal stability, structured 2D transition-metal carbides, nitrides, and carbonitrides (MXenes) with modulated atomic environments have emerged as efficient electrochemical energy conversion systems in the past decade. Herein, the most recent advances in the engineering of tunable structured MXenes as a powerful new platform for electrocatalytic energy conversion are comprehensively summarized. First, the state-of-the-art synthetic and processing methods, tunable nanostructures, electronic properties, and modulation principles of engineering MXene-derived nanoarchitectures are focused on. The current breakthroughs in the design of catalytic centers, atomic environments, and the corresponding structure-performance correlations, including termination engineering, heteroatom doping, defect engineering, heterojunctions, and alloying, are discussed. Furthermore, representative electrocatalytic applications of structured MXenes in energy conversion systems are also summarized. Finally, the challenges in and prospects for constructing MXene-based electrocatalytic materials are also discussed. This review provides a leading-edge understanding of the engineering of various MXene-based electrocatalysts and offers theoretical and experimental guidance for prospective studies, thereby promoting the practical applications of tunable structured MXenes in electrocatalytic energy conversion systems.
Collapse
Affiliation(s)
- Sutong Xiao
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yijuan Zheng
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiao Rong
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Liyun Wang
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yuanjiao Tang
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Xikui Liu
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Qiu
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
20
|
Mi Y, Zhao Y, Chen J, Li X, Yang Y, Gao F. Ternary heterostructures of 1D/2D/2D CuCo 2S 4/CuS/Ti 3C 2 MXene: Boosted amperometric sensing for chlorpyrifos. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129419. [PMID: 35780734 DOI: 10.1016/j.jhazmat.2022.129419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Multicomponent heterogeneous Ti3C2 transition metal carbide (MXene)-based materials are receiving extensive research attention due to their interesting synergistic interactions and catalytic properties. However, the morphology-controllable synthesis of heterostructures as structural stabilizers for Ti3C2 MXene remains a challenge owing the complicated synthesis procedure. In this work, a kind of ternary heterogeneous nanomaterials CuCo2S4/CuS/Ti3C2 MXene with a nanorod/nanoplate/nanosheet hybrid architecture is constructed through a one-step low-temperature solvothermal method. The well-designed ternary one-dimensional (1D)/two-dimensional (2D)/2D CuCo2S4/CuS/Ti3C2 MXene heteromaterials exhibit synergistic improvements in substrate-catalyzed reactions for electrochemical acetylcholinesterase (AChE) biosensor. The Michaelis-Menten constant for the Nafion/AChE/CuCo2S4/CuS/Ti3C2 MXene/GCE biosensor is 228 μM, which is smaller than ones reported in previous literatures, indicating a higher affinity of the fabricated enzyme biosensor to acetylthiocholine chloride. The biosensor exhibits a well linear relationship with chlorpyrifos concentration ranging from 2.852 × 10-12 M to 2.852 × 10-6 M. The multicomponent 1D/2D/2D CuCo2S4/CuS/Ti3C2 MXene heteromaterial may shine a light in more electrochemical applications.
Collapse
Affiliation(s)
- Yuping Mi
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yisong Zhao
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jianmin Chen
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xiaolu Li
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yunxia Yang
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Faming Gao
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
21
|
Khan K, Tareen AK, Iqbal M, Zhang Y, Mahmood A, Mahmood N, Yin J, Khatoon R, Zhang H. Recent advance in MXenes: New horizons in electrocatalysis and environmental remediation technologies. PROG SOLID STATE CH 2022. [DOI: 10.1016/j.progsolidstchem.2022.100370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Zhang W, Liang Z, Tian W, Liu Y, Du Y, Chen M, Cao D. 3D porous carbon conductive network with highly dispersed Fe-N xsites catalysts for oxygen reduction reaction. NANOTECHNOLOGY 2022; 33:455701. [PMID: 35896089 DOI: 10.1088/1361-6528/ac8487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Intrinsic activity and reactive numbers are considered two important factors in oxygen reduction reaction (ORR) catalysts. Herein, we report the rational design and synthesis of a strongly coupled hybrid material comprising of FeZn nanoparticles (FeZn NPs) supported by a three-dimensional carbon conductive network (FeZn NPs@3D-CN) for increased ORR performance. Fe-N-C sites can offer high intrinsic activity owing to the unique bonding and oxygen vacancies, and the carbon conductive network facilitating the exposure to active sites, and increasing electron transport. Because of the synergetic effect of the conductive networks containing Fe-N-C and polyaniline, the catalysts exhibited ORR activity in an alkaline medium via a four-electron transfer process. FeZn NPs@3D-CN exhibited outstanding performance with a limited current density (6.2 mA cm-2), the Tafel slope (81.19 mV dec-1), and stability (23 mV negative shift after 2000 cycles), which were superior to those of 20% Pt/C (5.7 mA cm-2, 75.1 mV dec-1, 36 mV negative shift after 2000 cycles). This research highlights the effect of conductive networks expanding pathways and reducing the resistance of mass transport, which is a facile method to generate superior ORR electrocatalysts.
Collapse
Affiliation(s)
- Wenxin Zhang
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zhiwei Liang
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Wensheng Tian
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yuan Liu
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yuanzhen Du
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Mingming Chen
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Dawei Cao
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
23
|
Bai X, Guan J. MXenes for electrocatalysis applications: Modification and hybridization. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64030-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Xu H, Li M, Gong S, Zhao F, Zhao Y, Li C, Qi J, Wang Z, Wang H, Fan X, Peng W, Liu J. Constructing titanium carbide MXene/reduced graphene oxide superlattice heterostructure via electrostatic self-assembly for high-performance capacitive deionization. J Colloid Interface Sci 2022; 624:233-241. [PMID: 35660891 DOI: 10.1016/j.jcis.2022.05.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 12/25/2022]
Abstract
Capacitive deionization has attracted wide concern on accountof its high energy efficiency, low manufacturing cost and environmental friendliness. Nevertheless, the development of capacitive deionization is still impeded because of the scarcity of suitable electrode materials with superior performance. Herein, we successfully prepared the two-dimensional (2D) titanium carbide (Ti3C2Tx) MXene/ reduced graphene oxide (rGO) superlattice heterostructure by a facile electrostatic self-assembly strategy and systematically investigated its performance as capacitive deionized electrode materials. The unique 2D/2D superlattice heterostructure not only effectively alleviates the self-stacking problem of Ti3C2Tx MXene nanosheets, but also endows the heterostructure with superior conductivity and fast ion diffusion rate. As a result, the MXene/rGO superlattice heterostructure exhibits an outstanding salt (Na+) adsorption capacity (48 mg g-1) at 1.2 V significantly superior to pristine Ti3C2Tx MXene nanosheets, along with outstanding long-term cycling performance. Furthermore, the mechanism involved was elucidated through comprehensive characterizations. Therefore, this study offers a new pathway for designing high-performance electrode materials for capacitive deionization.
Collapse
Affiliation(s)
- Huiting Xu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Meng Li
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Siqi Gong
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Fan Zhao
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Yang Zhao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chunli Li
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Junjie Qi
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Zhiying Wang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Honghai Wang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China.
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiapeng Liu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
25
|
Chen Y, Jiang Q, Bai X, Shan P, Liu T, Wang Y, Cui H, Feng R, Kang Q, Liang Z, Yuan H. Rational design of M-N 4-Gr/V 2C heterostructures as highly active ORR catalysts: a density functional theory study. RSC Adv 2022; 12:14368-14376. [PMID: 35702217 PMCID: PMC9096628 DOI: 10.1039/d2ra01956f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
Inspired by the composites of N-doped graphene and transition metal-based materials as well as MXene-based materials, heterostructures (M-N4-Gr/V2C) of eight different transition metals (M = Ti, Cr, Mn, Fe, Co, Ni, Cu, and Zn) doped with nitrogen-coordinated graphene and V2C as potential catalysts for the oxygen reduction reaction (ORR) using density functional theory (DFT) were designed and are described herein. The calculations showed that the heterostructure catalysts (except for Zn-N4-Gr/V2C) were thermodynamically stable. Ni-N4-Gr/V2C and Co-N4-Gr/V2C showed higher activities towards the ORR, with overpotentials as low as 0.32 and 0.45 V, respectively. Excellent catalytic performance results were observed from the change in electronic structure caused by the strong interaction between V2C and the graphene layers as well as the synergistic effect between the MN4 groups and the graphene layers. This study further provides insights into the practical application of ORR catalysts for MXene systems through the modulation of the electronic structure of two-dimensional materials.
Collapse
Affiliation(s)
- Yunjian Chen
- School of Mechanical Engineering, Shaanxi University of Technology Hanzhong Shaanxi 723001 China .,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology Hanzhong Shaanxi 723001 China
| | - Qi Jiang
- School of Mechanical Engineering, Shaanxi University of Technology Hanzhong Shaanxi 723001 China .,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology Hanzhong Shaanxi 723001 China
| | - Xue Bai
- School of Mechanical Engineering, Shaanxi University of Technology Hanzhong Shaanxi 723001 China .,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology Hanzhong Shaanxi 723001 China
| | - Pengyue Shan
- School of Mechanical Engineering, Shaanxi University of Technology Hanzhong Shaanxi 723001 China .,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology Hanzhong Shaanxi 723001 China
| | - Tong Liu
- School of Mechanical Engineering, Shaanxi University of Technology Hanzhong Shaanxi 723001 China .,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology Hanzhong Shaanxi 723001 China
| | - Yazhou Wang
- School of Mechanical Engineering, Shaanxi University of Technology Hanzhong Shaanxi 723001 China .,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology Hanzhong Shaanxi 723001 China
| | - Hong Cui
- School of Mechanical Engineering, Shaanxi University of Technology Hanzhong Shaanxi 723001 China .,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology Hanzhong Shaanxi 723001 China
| | - Rong Feng
- School of Mechanical Engineering, Shaanxi University of Technology Hanzhong Shaanxi 723001 China .,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology Hanzhong Shaanxi 723001 China
| | - Qin Kang
- School of Mechanical Engineering, Shaanxi University of Technology Hanzhong Shaanxi 723001 China .,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology Hanzhong Shaanxi 723001 China
| | - Zhiyong Liang
- School of Mechanical Engineering, Shaanxi University of Technology Hanzhong Shaanxi 723001 China .,Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology Hanzhong Shaanxi 723001 China
| | - Hongkuan Yuan
- School of Physical Science and Technology, Southwest University Chongqing 400715 China
| |
Collapse
|
26
|
Sun Y, Ding S, Xia B, Duan J, Antonietti M, Chen S. Biomimetic FeMo(Se, Te) as Joint Electron Pool Promoting Nitrogen Electrofixation. Angew Chem Int Ed Engl 2022; 61:e202115198. [DOI: 10.1002/anie.202115198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Yuntong Sun
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Shan Ding
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Baokai Xia
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Jingjing Duan
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| | - Sheng Chen
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China
- Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| |
Collapse
|
27
|
Yu R, Xue J, Wang Y, Qiu J, Huang X, Chen A, Xue J. Novel Ti 3C 2T x MXene nanozyme with manageable catalytic activity and application to electrochemical biosensor. J Nanobiotechnology 2022; 20:119. [PMID: 35264180 PMCID: PMC8905786 DOI: 10.1186/s12951-022-01317-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/20/2022] [Indexed: 01/05/2023] Open
Abstract
In this work, Ti3C2Tx MXene was identified as efficient nanozyme with area-dependent electrocatalytic activity in oxidation of phenolic compounds, which originated from the strong adsorption effect between the phenolic hydroxyl group and the oxygen atom on the surface of Ti3C2Tx MXene flake. On the basis of the novel electrocatalytic activity, Ti3C2Tx MXene was combined with alkaline phosphatase to construct a novel cascading catalytic amplification strategy using 1-naphthyl phosphate (1-NPP) as substrate, thereby realizing efficient electrochemical signal amplification. Taking advantage of the novel cascading catalytic amplification strategy, an electrochemical biosensor was fabricated for BCR/ABL fusion gene detection, which achieved excellent sensitivity with linear range from 0.2 fM to 20 nM and limit of detection down to 0.05 fM. This biosensor provided a promising tool for ultrasensitive fusion gene detection in early diagnosis of chronic myelogenous leukemia and acute lymphocytic leukemia. Moreover, the manageable catalytic activity of MXene broke a path for developing nanozymes, which possessed enormous application potential in not only electrochemical analysis but also the extensive fields including organic synthesis, pollutant disposal and so on.
Collapse
Affiliation(s)
- Rongjun Yu
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Jian Xue
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
| | - Yang Wang
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Jingfu Qiu
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyi Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, China.
| | - Anyi Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.
| | - Jianjiang Xue
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China.
| |
Collapse
|
28
|
Sun Y, Ding S, Xia B, Duan J, Antonietti M, Chen S. Biomimetic FeMo(Se, Te) as Joint Electron Pool Promoting Nitrogen Electrofixation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuntong Sun
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Shan Ding
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Baokai Xia
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Jingjing Duan
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| | - Sheng Chen
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing 210094 China
- Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| |
Collapse
|
29
|
Decorating MXene with tiny ZIF-8 nanoparticles: An effective approach to construct composites for water pollutant removal. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Huang H, Yu D, Hu F, Huang S, Song J, Chen H, Li LL, Peng S. Clusters Induced Electron Redistribution to Tune Oxygen Reduction Activity of Transition Metal Single‐Atom for Metal–Air Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hongjiao Huang
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Deshuang Yu
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Feng Hu
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Shao‐Chu Huang
- Department of Materials Science and Engineering National Tsing Hua University 101, Sec. 2, Kuang-Fu Road Hsinchu 30013 Taiwan
| | - Junnan Song
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Han‐Yi Chen
- Department of Materials Science and Engineering National Tsing Hua University 101, Sec. 2, Kuang-Fu Road Hsinchu 30013 Taiwan
| | - Lin Lin Li
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Shengjie Peng
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| |
Collapse
|
31
|
Wu X, Xiao S, Long Y, Ma T, Shao W, Cao S, Xiang X, Ma L, Qiu L, Cheng C, Zhao C. Emerging 2D Materials for Electrocatalytic Applications: Synthesis, Multifaceted Nanostructures, and Catalytic Center Design. SMALL 2022; 18:e2105831. [PMID: 35102688 DOI: 10.1002/smll.202105831] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/23/2021] [Indexed: 02/05/2023]
Abstract
Currently, the development of advanced 2D nanomaterials has become an interdisciplinary subject with extensive studies due to their extraordinary physicochemical performances. Beyond graphene, the emerging 2D-material-derived electrocatalysts (2D-ECs) have aroused great attention as one of the best candidates for heterogeneous electrocatalysis. The tunable physicochemical compositions and characteristics of 2D-ECs enable rational structural engineering at the molecular/atomic levels to meet the requirements of different catalytic applications. Due to the lack of instructive and comprehensive reviews, here, the most recent advances in the nanostructure and catalytic center design and the corresponding structure-function relationships of emerging 2D-ECs are systematically summarized. First, the synthetic pathways and state-of-the-art strategies in the multifaceted structural engineering and catalytic center design of 2D-ECs to promote their electrocatalytic activities, such as size and thickness, phase and strain engineering, heterojunctions, heteroatom doping, and defect engineering, are emphasized. Then, the representative applications of 2D-ECs in electrocatalytic fields are depicted and summarized in detail. Finally, the current breakthroughs and primary challenges are highlighted and future directions to guide the perspectives for developing 2D-ECs as highly efficient electrocatalytic nanoplatforms are clarified. This review provides a comprehensive understanding to engineer 2D-ECs and may inspire many novel attempts and new catalytic applications across broad fields.
Collapse
Affiliation(s)
- Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Sutong Xiao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yanping Long
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Wenjie Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Sujiao Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Xi Xiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Li Qiu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China.,College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.,College of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
32
|
Nocchetti M, Donnadio A, Vischini E, Posati T, Albonetti C, Campoccia D, Arciola CR, Ravaioli S, Mariani V, Montanaro L, Vivani R. Synthesis, Crystal Structure, and Antibacterial Properties of Silver-Functionalized Low-Dimensional Layered Zirconium Phosphonates. Inorg Chem 2022; 61:2251-2264. [PMID: 35044759 PMCID: PMC9946290 DOI: 10.1021/acs.inorgchem.1c03565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
New insoluble layered zirconium phosphate carboxyaminophosphonates (ZPs), with the general formula Zr2(PO4)H5[(O3PCH2)2N(CH2)nCOO]2·mH2O (n = 3, 4, and 5), have been prepared and characterized. The crystal structure for n = 3 and 4 samples was determined ab initio from X-ray powder diffraction data. The structure for n = 3 was monoclinic in space group C2/c with the following unit cell parameters: a = 34.346(1) Å, b = 8.4930(2) Å, c = 9.0401(2) Å, and β = 97.15(1)°. The structure for n = 4 was triclinic in space group P1̅ with the following unit cell parameters: a = 17.9803(9) Å, b = 8.6066(4) Å, c = 9.0478(3) Å, α = 90.466(3)°, β = 94.910(4)°, and γ = 99.552(4)°. The two structures had the same connectivity as Zr phosphate glycine diphosphonate (n = 1), as previously reported. By intercalation of short amines, these layered compounds were exfoliated in single lamella or packets of a few lamellae, which formed colloidal dispersions in water. After a thorough characterization, the dispersed lamellae were functionalized with Ag nanoparticles, which were grown in situ on the surface of exfoliated lamellae. Finally, their antimicrobial activity was tested on several Gram-positive and Gram-negative bacteria. All of these systems were found to be active against the four pathogens most frequently isolated from orthopedic prosthetic infections and often causative of nosocomial infections. Interestingly, they were found to express powerful inhibitory activity even against bacterial strains exhibiting a relevant profile of antibiotic resistance such as Staphylococcus aureus ATCC 700699.
Collapse
Affiliation(s)
- Morena Nocchetti
- Department
of Pharmaceutical Sciences, University of
Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Anna Donnadio
- Department
of Pharmaceutical Sciences, University of
Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Eleonora Vischini
- Department
of Pharmaceutical Sciences, University of
Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Tamara Posati
- Institute
of Organic Synthesis and Photoreactivity, National Research Council, via P. Gobetti 101, 40129 Bologna, Italy
| | - Cristiano Albonetti
- Consiglio
Nazionale delle Ricerche, Istituto per lo
Studio dei Materiali Nanostrutturati (CNRISMN), 40129 Bologna, Italy
| | - Davide Campoccia
- Laboratorio
di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Carla Renata Arciola
- Laboratorio
di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
- Department
of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, via San Giacomo 14, 40126 Bologna, Italy
- Laboratorio
di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Stefano Ravaioli
- Laboratorio
di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Valentina Mariani
- Laboratorio
di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Lucio Montanaro
- Laboratorio
di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
- Department
of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, via San Giacomo 14, 40126 Bologna, Italy
| | - Riccardo Vivani
- Department
of Pharmaceutical Sciences, University of
Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| |
Collapse
|
33
|
Ahsan MA, He T, Noveron JC, Reuter K, Puente-Santiago AR, Luque R. Low-dimensional heterostructures for advanced electrocatalysis: an experimental and computational perspective. Chem Soc Rev 2022; 51:812-828. [PMID: 35022644 DOI: 10.1039/d1cs00498k] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Low dimensional electrocatalytic heterostructures have recently attracted significant attention in the catalysis community due to their highly tuneable interfaces and exciting electronic features, opening up new possibilities for effective nanometric control of both the charge carriers and energetic states of several intermediate catalytic species. In-depth understanding of electrocatalytic routes at the interface between two or more low-dimensional nanostructures has triggered the development of heterostructure nanocatalysts with extraordinary properties for water splitting reactions, NRR and CO2RR. This tutorial review provides an overview of the most recent advances in synthetic strategies for 0D-1D, 0D-2D, and 2D-2D nanoheterostructures, discussing key aspects of their electrocatalytic performances from experimental and computational perspectives as well as their applications towards the development of overall water splitting and Zn-air battery devices.
Collapse
Affiliation(s)
- Md Ariful Ahsan
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, USA.
| | - Tianwei He
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Juan C Noveron
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, USA.
| | - Karsten Reuter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany. .,Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Alain R Puente-Santiago
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, USA.
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain.,Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russia
| |
Collapse
|
34
|
Ponnada S, Kiai MS, Gorle DB, Venkatachalam R, Saini B, Murugavel K, Nowduri A, Singhal R, Marken F, Kulandainathan AM, Nanda KK, Sharma RK, Bose RSC. Recent Status and Challenges in Multifunctional Electrocatalysis Based on 2D MXenes. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00428c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to their chemical and electrical characteristics, such as metallic conductivity, redox-activity in transition metals, high hydrophilicity, and adjustable surface properties, MXenes are emerging as important contributors to oxygen reduction...
Collapse
|
35
|
Ag Nanoparticles decorated few-layer Nb2CT nanosheets architectures with superior lithium/sodium-ion storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139566] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Peng S, Huang H, Yu D, Hu F, Huang SC, Song J, Chen HY, Li L. Clusters Induced Electron Redistribution to Tune Oxygen Reduction Activity of Transition Metal Single-Atom for Metal-Air Batteries. Angew Chem Int Ed Engl 2021; 61:e202116068. [PMID: 34957659 DOI: 10.1002/anie.202116068] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 11/11/2022]
Abstract
Oxygen reduction reaction (ORR) activity can be effectively tuned by modulating the electron configuration and optimizing the chemical bonds. Herein, a general strategy to optimize the activity of metal single-atom is achieved by the decoration of metal clusters via a coating-pyrolysis-etching route. In this unique structure, the metal clusters are able to induce electron redistribution and modulate M-N species bond lengths. As a result, the M-ACSA@NC exhibits superior ORR activity compared with the nanoparticles-decorated counterparts. The performance enhancement is attributed to the optimized intermediates desorption benefiting from the unique electronic configuration. Theoretical analysis reinforces the significant roles of metal clusters by correlating the ORR activity with clusters induced charge transfer. As a proof-of-concept, various metal-air batteries assembled with the Fe-ACSA@NC deliver remarkable power densities and capacities. This strategy is an effective and universal technique for electron modulation of M-N-C, which shows great potential in application of energy storage devices.
Collapse
Affiliation(s)
- Shengjie Peng
- Nanjing University of Aeronautics and Astronautics College of Material Science & Technology, College of Materials Science and Technology, No. 169 Sheng Tai West Road, Jiangning District, Nanjing, Jiangsu, China, 211106, Nanjing, CHINA
| | - Hongjiao Huang
- Nanjing University of Aeronautics and Astronautics, College of Material Science and Technology, CHINA
| | - Deshuang Yu
- Nanjing University of Aeronautics and Astronautics, College of Material Science and Technology, CHINA
| | - Feng Hu
- Nanjing University of Aeronautics and Astronautics, College of Material Science and Technology, CHINA
| | - Shao-Chu Huang
- National Tsing Hua University, Department of Materials Science and Engineering, TAIWAN
| | - Junnan Song
- Nanjing University of Aeronautics and Astronautics, College of Material Science and Technology, CHINA
| | - Han-Yi Chen
- National Tsing Hua University, Department of Materials Science and Engineering, CHINA
| | - Linlin Li
- Nanjing University of Aeronautics and Astronautics, Department of Materials Science and Engineering, CHINA
| |
Collapse
|
37
|
Faraji M, Parsaee F, Kheirmand M. Facile fabrication of N-doped graphene/ Ti3C2Tx (Mxene) aerogel with excellent electrocatalytic activity toward oxygen reduction reaction in fuel cells and metal-air batteries. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Jin X, Gu TH, Kwon NH, Hwang SJ. Synergetic Advantages of Atomically Coupled 2D Inorganic and Graphene Nanosheets as Versatile Building Blocks for Diverse Functional Nanohybrids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005922. [PMID: 33890336 DOI: 10.1002/adma.202005922] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Indexed: 05/05/2023]
Abstract
2D nanostructured materials, including inorganic and graphene nanosheets, have evoked plenty of scientific research activity due to their intriguing properties and excellent functionalities. The complementary advantages and common 2D crystal shapes of inorganic and graphene nanosheets render their homogenous mixtures powerful building blocks for novel high-performance functional hybrid materials. The nanometer-level thickness of 2D inorganic/graphene nanosheets allows the achievement of unusually strong electronic couplings between sheets, leading to a remarkable improvement in preexisting functionalities and the creation of unexpected properties. The synergetic merits of atomically coupled 2D inorganic-graphene nanosheets are presented here in the exploration of novel heterogeneous functional materials, with an emphasis on their critical roles as hybridization building blocks, interstratified sheets, additives, substrates, and deposited monolayers. The great flexibility and controllability of the elemental compositions, defect structures, and surface natures of inorganic-graphene nanosheets provide valuable opportunities for exploring high-performance nanohybrids applicable as electrodes for supercapacitors and rechargeable batteries, electrocatalysts, photocatalysts, and water purification agents, to give some examples. An outlook on future research perspectives for the exploitation of emerging 2D nanosheet-based hybrid materials is also presented along with novel synthetic strategies to maximize the synergetic advantage of atomically mixed 2D inorganic-graphene nanosheets.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae-Ha Gu
- Department of Chemistry and Nanoscience, College of Natural Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Nam Hee Kwon
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
39
|
Liu M, Xiao X, Li Q, Luo L, Ding M, Zhang B, Li Y, Zou J, Jiang B. Recent progress of electrocatalysts for oxygen reduction in fuel cells. J Colloid Interface Sci 2021; 607:791-815. [PMID: 34536936 DOI: 10.1016/j.jcis.2021.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022]
Abstract
Oxygen reduction reaction (ORR) has gradually been in the limelight in recent years because of its great application potential for fuel cells and rechargeable metal-air batteries. Therefore, significant issues are increasingly focused on developing effective and economical ORR electrocatalysts. This review begins with the reaction mechanisms and theoretical calculations of ORR in acidic and alkaline media. The latest reports and challenges in ORR electrocatalysis are traced. Most importantly, the latest advances in the development of ORR electrocatalysts are presented in detail, including platinum group metal (PGM), transition metal, and carbon-based electrocatalysts with various nanostructures. Furthermore, the development prospects and challenges of ORR electrocatalysts are speculated and discussed. These insights would help to formulate the design guidelines for highly-active ORR electrocatalysts and affect future research to obtain new knowledge for ORR mechanisms.
Collapse
Affiliation(s)
- Mingyang Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China; College of Materials Science and Chemical Engineering, Harbin Engineering University, China
| | - Xudong Xiao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Qi Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Laiyu Luo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Minghui Ding
- College of Materials Science and Chemical Engineering, Harbin Engineering University, China.
| | - Bin Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, China; Institute of Petroleum Chemistry Heilongjiang Academy of Sciences, China
| | - Yuxin Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| |
Collapse
|
40
|
Li H, Shu X, Tong P, Zhang J, An P, Lv Z, Tian H, Zhang J, Xia H. Fe-Ni Alloy Nanoclusters Anchored on Carbon Aerogels as High-Efficiency Oxygen Electrocatalysts in Rechargeable Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102002. [PMID: 34331377 DOI: 10.1002/smll.202102002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/02/2021] [Indexed: 06/13/2023]
Abstract
In this work, Fe-Ni alloy nanoclusters (Fe-Ni ANCs) anchored on N, S co-doped carbon aerogel (Fe-Ni ANC@NSCA catalysts) are successfully prepared by the optimal pyrolysis of polyaniline (PANI) aerogels derived from the freeze-drying of PANI hydrogel obtained by the polymerization of aniline monomers in the co-presence of tannic acid (TA), Fe3+ , and Ni2+ ions. In addition, the optimal molar ratio of the TA, Fe3+ , and Ni2+ ions for synthesis of Fe-Ni ANC@NSCA catalysts are 1:2:5, which can guarantee the formation of carbon aerogel composed of quasi-2D porous carbon sheets and the formation of high-density Fe-Ni ANCs with an ultrasmall size between 2 to 2.8 nm. These Fe-Ni ANCs consisting of N4 -Fe-O-Ni-N4 moiety are proposed as a new type of active species for the first time, to the best of the authors' knowledge. Thanks to their unique features, the Fe-Ni ANC@NSCA catalysts show excellent performance in oxygen reduction reaction with a half-wave potential (E1/2 ) of 0.891 V and oxygen evolution reaction (260 mV @ 10 mA cm-2 ) in alkaline media as bifunctional catalysts, which are better than the state-of-the-art commercial Pt/C catalysts and RuO2 catalysts. Moreover, Zn-air battery assembled with the Fe-Ni ANC@NSCA catalysts also shows a remarkable performance and exceptionally high stability over 500 h at 5 mA cm-2 .
Collapse
Affiliation(s)
- Hong Li
- State Key Lab of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xinxin Shu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Peiran Tong
- Center of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jihui Zhang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhengxing Lv
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - He Tian
- Center of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jintao Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Haibing Xia
- State Key Lab of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
41
|
Wang XY, Lin ZW, Jiao YQ, Liu JC, Wang RH. Super-Dispersed Fe-N Sites Embedded into Porous Graphitic Carbon for ORR: Size, Composition and Activity Control. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2106. [PMID: 34443936 PMCID: PMC8399882 DOI: 10.3390/nano11082106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022]
Abstract
Searching for high-efficient, good long-term stability, and low-cost electrocatalysts toward oxygen reduction reaction (ORR) is highly desirable for the development of sustainable energy conversion devices. Iron-nitrogen doped carbon (Fe-N/C) catalysts have been recognized as the most promising candidates for traditional Pt-based catalysts that benefit from their high activity, excellent anti-poisoning ability, and inexpensiveness. Here, a super-dispersed and high-performance Fe-N/C catalyst was derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. It produced a series of catalysts, whose sizes could be tuned in the range from 62 to over 473 nm in diameter. After rationally regulating the component and heating treatment, the best ORR activity was measured for the catalyst with a size of 105 nm, which was obtained when the Fe3+/Zn2+ molar ratio was 0.05 and carbonization temperature was 900 °C. It exhibited a high onset potential (Eonset = 0.99 V) and half-wave potential (E1/2 = 0.885 V) compared with a commercial 20% Pt/C catalyst (Eonset = 0.10 V, E1/2 = 0.861 V) as well as much better durability and methanol resistance in an alkaline electrolyte.
Collapse
Affiliation(s)
- Xin Yu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China; (X.Y.W.); (Y.Q.J.)
| | - Ze Wei Lin
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150001, China;
| | - Yan Qing Jiao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China; (X.Y.W.); (Y.Q.J.)
| | - Jian Cong Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China; (X.Y.W.); (Y.Q.J.)
| | - Rui Hong Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China; (X.Y.W.); (Y.Q.J.)
| |
Collapse
|
42
|
Yin H, Xing K, Zhang Y, Dissanayake DMAS, Lu Z, Zhao H, Zeng Z, Yun JH, Qi DC, Yin Z. Periodic nanostructures: preparation, properties and applications. Chem Soc Rev 2021; 50:6423-6482. [PMID: 34100047 DOI: 10.1039/d0cs01146k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Periodic nanostructures, a group of nanomaterials consisting of single or multiple nano units/components periodically arranged into ordered patterns (e.g., vertical and lateral superlattices), have attracted tremendous attention in recent years due to their extraordinary physical and chemical properties that offer a huge potential for a multitude of applications in energy conversion, electronic and optoelectronic applications. Recent advances in the preparation strategies of periodic nanostructures, including self-assembly, epitaxy, and exfoliation, have paved the way to rationally modulate their ferroelectricity, superconductivity, band gap and many other physical and chemical properties. For example, the recent discovery of superconductivity observed in "magic-angle" graphene superlattices has sparked intensive studies in new ways, creating superlattices in twisted 2D materials. Recent development in the various state-of-the-art preparations of periodic nanostructures has created many new ideas and findings, warranting a timely review. In this review, we discuss the current advances of periodic nanostructures, including their preparation strategies, property modulations and various applications.
Collapse
Affiliation(s)
- Hang Yin
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Recent advances in MXene-based nanoarchitectures as electrode materials for future energy generation and conversion applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213806] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Kuznetsov DA, Chen Z, Abdala PM, Safonova OV, Fedorov A, Müller CR. Single-Atom-Substituted Mo 2C Tx:Fe-Layered Carbide for Selective Oxygen Reduction to Hydrogen Peroxide: Tracking the Evolution of the MXene Phase. J Am Chem Soc 2021; 143:5771-5778. [PMID: 33789048 DOI: 10.1021/jacs.1c00504] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This work critically assesses the electrocatalytic activity, stability, and nature of the active phase of a two-dimensional molybdenum carbide (MXene) with single-atomic iron sites, Mo2CTx:Fe (Tx are surface terminating groups O, OH, and F), in the catalysis of the oxygen reduction reaction (ORR). X-ray absorption spectroscopy unequivocally confirmed that the iron single sites were incorporated into the Mo2CTx structure by substituting Mo atoms in the molybdenum carbide lattice with no other detectable Fe-containing phases. Mo2CTx:Fe, the first two-dimensional carbide with isolated iron sites, demonstrates a high catalytic activity and selectivity in the oxygen reduction to hydrogen peroxide. However, an analysis of the electrode material after the catalytic tests revealed that Mo2CTx:Fe transformed in situ into a graphitic carbon framework with dispersed iron oxyhydroxide (ferrihydrite, Fh) species (Fh/C), which are the actual active species. This experimental observation and the results obtained for the titanium and vanadium 2D carbides challenge previous studies that discuss the activity of the native MXene phases in oxygen electrocatalysis. Our work showcases the role of 2D metal carbides as precursors for active carbon-based (electro)catalysts and, more fundamentally, highlights the intrinsic evolution pathways of MXenes in electrocatalysis.
Collapse
Affiliation(s)
- Denis A Kuznetsov
- Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland
| | - Zixuan Chen
- Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland
| | - Paula M Abdala
- Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland
| | | | - Alexey Fedorov
- Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
45
|
Zhang M, Ma Z, Song H. Preparation and Application of Fe-N Co-Doped GNR@CNT Cathode Oxygen Reduction Reaction Catalyst in Microbial Fuel Cells. NANOMATERIALS 2021; 11:nano11020377. [PMID: 33540737 PMCID: PMC7912981 DOI: 10.3390/nano11020377] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022]
Abstract
Through one-step pyrolysis, non-noble-metal oxygen reduction reaction (ORR) electrocatalysts were constructed from ferric trichloride, melamine, and graphene nanoribbon@carbon nanotube (GNR@CNT), in which a portion of the multiwall carbon nanotube is unwrapped/unzipped radially, and thus graphene nanoribbon is exposed. In this study, Fe-N/GNR@CNT materials were used as an air-cathode electrocatalyst in microbial fuel cells (MFCs) for the first time. The Fe-N/C shows similar power generation ability to commercial Pt/C, and its electron transfer number is 3.57, indicating that the ORR process primarily occurs with 4-electron. Fe species, pyridinic-N, graphitic-N, and oxygen-containing groups existing in GNR@CNT frameworks are likely to endow the electrocatalysts with good ORR performance, suggesting that a GNR@CNT-based carbon supporter would be a good candidate for the non-precious metal catalyst to replace Pt-based precious metal.
Collapse
Affiliation(s)
| | - Zhaokun Ma
- Correspondence: (Z.M.); (H.S.); Tel.: +86-10-64434916 (Z.M.); +86-10-64434916 (H.S.)
| | - Huaihe Song
- Correspondence: (Z.M.); (H.S.); Tel.: +86-10-64434916 (Z.M.); +86-10-64434916 (H.S.)
| |
Collapse
|
46
|
Li M, Fan L, Xiao Z, Zhang L, Wang Z, Kang Z, Guo H, Dai F, Lu X, Sun D. Micelles of Mesoporous Silica with Inserted Iron Complexes as a Platform for Constructing Efficient Electrocatalysts for Oxygen Reduction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54720-54731. [PMID: 33232601 DOI: 10.1021/acsami.0c16382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Iron, N-codoped carbon materials (Fe-N-C) are promising electrocatalysts toward oxygen reduction reactions due to their high atom utilization efficiency and intrinsic activity. Nanostructuring of the Fe-N-C materials, such as introducing porosity into the carbon structure, would be conducive to further increasing the exposure of active sites as well as improving the mass transfer. Herein, we explore the potential of iron complex-functionalized micelles of mesoporous SiO2 as a platform for constructing porous Fe-N-C materials. The classical three-dimensional MCM-48 was selected as a proof-of-concept example, which was utilized as the hard template, and cetyltrimethylammonium bromide micelles inside it played the role of the main carbon source. Fe-Nx sites were derived from Fe-1,10-phenanthroline complexes in the micelles introduced by in situ incorporation of 1,10-phenanthroline and post Fe2+ insertion in an aqueous solution. After thermal annealing in a nitrogen atmosphere and subsequent removal of the MCM-48 framework, a carbon material that possesses porous structural features with uniformly dispersed Fe-Nx sites (MPC@PhFe) was obtained, which shows superior ORR activity in a 0.1 M KOH solution and great potential for Zn-air battery applications as well. This work demonstrates the feasibility as well as the effectiveness of turning micelles of mesoporous SiO2 into porous carbon structures and might offer a universal strategy for manufacturing carbon materials for future application in energy storage and conversion.
Collapse
Affiliation(s)
- Mengfei Li
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Lili Fan
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Zuoxu Xiao
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Ling Zhang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Zhikun Wang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Zixi Kang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hailing Guo
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Fangna Dai
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Daofeng Sun
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
47
|
Nb-based MXenes for efficient electrochemical sensing of small biomolecules in the anodic potential. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106811] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
48
|
Lim KRG, Handoko AD, Nemani SK, Wyatt B, Jiang HY, Tang J, Anasori B, Seh ZW. Rational Design of Two-Dimensional Transition Metal Carbide/Nitride (MXene) Hybrids and Nanocomposites for Catalytic Energy Storage and Conversion. ACS NANO 2020; 14:10834-10864. [PMID: 32790329 DOI: 10.1021/acsnano.0c05482] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electro-, photo-, and photoelectrocatalysis play a critical role toward the realization of a sustainable energy economy. They facilitate numerous redox reactions in energy storage and conversion systems, enabling the production of chemical feedstock and clean fuels from abundant resources like water, carbon dioxide, and nitrogen. One major obstacle for their large-scale implementation is the scarcity of cost-effective, durable, and efficient catalysts. A family of two-dimensional transition metal carbides, nitrides, and carbonitrides (MXenes) has recently emerged as promising earth-abundant candidates for large-area catalytic energy storage and conversion due to their unique properties of hydrophilicity, high metallic conductivity, and ease of production by solution processing. To take full advantage of these desirable properties, MXenes have been combined with other materials to form MXene hybrids with significantly enhanced catalytic performances beyond the sum of their individual components. MXene hybridization tunes the electronic structure toward optimal binding of redox active species to improve intrinsic activity while increasing the density and accessibility of active sites. This review outlines recent strategies in the design of MXene hybrids for industrially relevant electrocatalytic, photocatalytic, and photoelectrocatalytic applications such as water splitting, metal-air/sulfur batteries, carbon dioxide reduction, and nitrogen reduction. By clarifying the roles of individual material components in the MXene hybrids, we provide design strategies to synergistically couple MXenes with associated materials for highly efficient and durable catalytic applications. We conclude by highlighting key gaps in the current understanding of MXene hybrids to guide future MXene hybrid designs in catalytic energy storage and conversion applications.
Collapse
Affiliation(s)
- Kang Rui Garrick Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Albertus D Handoko
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Srinivasa Kartik Nemani
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Brian Wyatt
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Hai-Ying Jiang
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Babak Anasori
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| |
Collapse
|
49
|
Current Trends in MXene-Based Nanomaterials for Energy Storage and Conversion System: A Mini Review. Catalysts 2020. [DOI: 10.3390/catal10050495] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MXene is deemed to be one of the best attentive materials in an extensive range of applications due to its stupendous optical, electronic, thermal, and mechanical properties. Several MXene-based nanomaterials with extraordinary characteristics have been proposed, prepared, and practiced as a catalyst due to its two-dimensional (2D) structure, large specific surface area, facile decoration, and high adsorption capacity. This review summarizes the synthesis and characterization studies, and the appropriate applications in the catalysis field, exclusively in the energy storage systems. Ultimately, we also discussed the encounters and prospects for the future growth of MXene-based nanomaterials as an efficient candidate in developing efficient energy storage systems. This review delivers crucial knowledge within the scientific community intending to design efficient energy storage systems.
Collapse
|