1
|
Van Nguyen H, Tung Pham S, Vu TN, Van Nguyen H, La DD. Effective treatment of 2,4,6-trinitrotoluene from aqueous media using a sono-photo-Fenton-like process with a zero-valent iron nanoparticle (nZVI) catalyst. RSC Adv 2024; 14:23720-23729. [PMID: 39077310 PMCID: PMC11284922 DOI: 10.1039/d4ra03907f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
In this study, we examine the effectiveness of using a combination of a sono-photo-Fenton-like procedure and nano zero-valent iron catalyst (nZVI) to treat 2,4,6-trinitrotoluene (TNT) in an aquatic environment. Zero-valent iron particles were generated by a chemical reduction technique. nZVI nanoparticles were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD) to characterize the nanocatalyst. The resulting nZVI nanoparticles were used as an addition in a sono-photo-Fenton method to remediate an aqueous solution contaminated with TNT. Furthermore, influences of operational factors such as temperature, catalyst dosage, wavelength, ultraviolet power, ultrasonic frequency and power, pH level, H2O2/nZVI ratio, initial TNT concentration, and reaction duration on the treatment of TNT were investigated. Under the conditions of an ideal pH of 3, temperature range of 40-45 °C, concentration of 50 mg per L TNT, dose of 2 mM of nZVI, and ratio of H2O2/Fe0 of 20, a treatment efficiency of 95.2% was achieved after a duration of 30 minutes. The sono-photo-Fenton process combined with nZVI showed a higher TNT removal efficiency compared to the Fenton, sono-Fenton, and photo-Fenton processes under the same conditions. Moreover, it promises a potential solution to treat TNT at the pilot scale while allowing reuse of the nZVI catalyst and the limitation of sludge.
Collapse
Affiliation(s)
| | | | | | | | - Duong Duc La
- Institute of Chemistry and Materials Hanoi Vietnam
| |
Collapse
|
2
|
Jaffari ZH, Na S, Abbas A, Park KY, Cho KH. Digital imaging-in-flow (FlowCAM) and probabilistic machine learning to assess the sonolytic disinfection of cyanobacteria in sewage wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133762. [PMID: 38402678 DOI: 10.1016/j.jhazmat.2024.133762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
Assessing the cyanobacteria disinfection in sewage and its compliance with international-standards requires determining the concentration and viability, which can be achieve using Imaging Flow Cytometry device called FlowCAM. The objective is to thoroughly investigate the sonolytic morphological changes and disinfection-performance towards toxic cyanobacteria existing in sewage using the FlowCAM. After optimizing the process conditions, over 80% decline in cyanobacterial cell counts was observed, accompanied by an additional 10-15% of cells exhibiting injuries, as confirmed through morphological investigation. Moreover, for the first time, the experimentally collected data was utilized to build deep-learning probabilistic-neural-networks (PNN) and natural-gradient-boosting (NGBoost) models for predicting disinfection efficiency and ABD area as target outputs. The findings suggest that the NGBoost model exhibited superior prediction performance for both targets, with high test coefficient of determination (R2 > 0.87) and lower test errors (RMSE < 7.10, MAE < 4.14). The confidence interval examination in NGBoost prediction performance showed a minute variation from the experimentally calculated values, suggesting a high accuracy in model prediction. Finally, SHAP analysis suggests the sonolytic time alone contributes around 50% to the cyanobacteria disinfection. Overall, the findings demonstrate the effectiveness of the FlowCAM device and the potential of machine-learning modeling in predicting disinfection outcomes.
Collapse
Affiliation(s)
- Zeeshan Haider Jaffari
- Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Seongyeon Na
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Tehchnology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Ather Abbas
- Physical Science and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal, Mecca, Saudi Arabia
| | - Ki Young Park
- Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Kyung Hwa Cho
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
3
|
Ioannidi AA, Bampos G, Antonopoulou M, Oulego P, Boczkaj G, Mantzavinos D, Frontistis Z. Sonocatalytic degradation of Bisphenol A from aquatic matrices over Pd/CeO 2 nanoparticles: Kinetics study, transformation products, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170820. [PMID: 38340814 DOI: 10.1016/j.scitotenv.2024.170820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
In this work, different ratios of palladium - cerium oxide (Pd/CeO2) catalyst were synthesized and characterized, while their sonocatalytic activity was evaluated for the degradation of the xenobiotic Bisphenol A (BPA) from aqueous solutions. Sonocatalytic activity expressed as BPA decomposition exhibited a volcano-type behavior in relation to the Pd loading, and the 0.25Pd/CeO2 catalyst characterized by the maximum Pd dispersion and lower crystallite size demonstrated the higher activity. Using 500 mg/L of 0.25 % Pd/CeO2 increased the kinetic constant for BPA destruction by more than two times compared to sonolysis alone (20 kHz at 71 W/L). Meanwhile, the simultaneous use of ultrasound and a catalyst enhanced the efficiency by 50.1 % compared to the sum of the individual processes, resulting in 95 % BPA degradation in 60 min. The sonocatalytic degradation of BPA followed pseudo-first-order kinetics, and the apparent kinetic constant was increased with ultrasound power and catalyst loading, while the efficiency was decreased in bottled water and secondary effluent. From the experiments that were conducted using appropriate scavengers, it was revealed that the degradation mainly occurred on the bubble/liquid interface of the formed cavities, while the reactive species produced from the thermal or light excitation of the prepared semiconductor also participated in the reaction. Five first-stage and four late-stage transformation products were identified using UHPLC/TOF-MS, and a pathway for the sonocatalytic degradation of BPA was proposed. According to ECOSAR software prediction, most transformation by-products (TBPs) present lower ecotoxicity than the parent compound, although some remain toxic to the indicators chosen.
Collapse
Affiliation(s)
- Alexandra A Ioannidi
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Georgios Bampos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, c/ Julián Claverías, E-33071 Oviedo, Spain
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, GR-50132 Kozani, Greece.
| |
Collapse
|
4
|
Kalantari Bolaghi Z, Rodriguez-Seco C, Yurtsever A, Ma D. Exploring the Remarkably High Photocatalytic Efficiency of Ultra-Thin Porous Graphitic Carbon Nitride Nanosheets. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:103. [PMID: 38202558 PMCID: PMC10781176 DOI: 10.3390/nano14010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Graphitic carbon nitride (g-C3N4) is a metal-free photocatalyst used for visible-driven hydrogen production, CO2 reduction, and organic pollutant degradation. In addition to the most attractive feature of visible photoactivity, its other benefits include thermal and photochemical stability, cost-effectiveness, and simple and easy-scale-up synthesis. However, its performance is still limited due to its low absorption at longer wavelengths in the visible range, and high charge recombination. In addition, the exfoliated nanosheets easily aggregate, causing the reduction in specific surface area, and thus its photoactivity. Herein, we propose the use of ultra-thin porous g-C3N4 nanosheets to overcome these limitations and improve its photocatalytic performance. Through the optimization of a novel multi-step synthetic protocol, based on an initial thermal treatment, the use of nitric acid (HNO3), and an ultrasonication step, we were able to obtain very thin and well-tuned material that yielded exceptional photodegradation performance of methyl orange (MO) under visible light irradiation, without the need for any co-catalyst. About 96% of MO was degraded in as short as 30 min, achieving a normalized apparent reaction rate constant (k) of 1.1 × 10-2 min-1mg-1. This represents the highest k value ever reported using C3N4-based photocatalysts for MO degradation, based on our thorough literature search. Ultrasonication in acid not only prevents agglomeration of g-C3N4 nanosheets but also tunes pore size distribution and plays a key role in this achievement. We also studied their performance in a photocatalytic hydrogen evolution reaction (HER), achieving a production of 1842 µmol h-1 g-1. Through a profound analysis of all the samples' structure, morphology, and optical properties, we provide physical insight into the improved performance of our optimized porous g-C3N4 sample for both photocatalytic reactions. This research may serve as a guide for improving the photocatalytic activity of porous two-dimensional (2D) semiconductors under visible light irradiation.
Collapse
Affiliation(s)
| | - Cristina Rodriguez-Seco
- Centre Énergie Materiaux et Telécommunications, Institut National de la Recherche Scientifique (INRS), Varennes, QC J3X 1P7, Canada; (Z.K.B.); (A.Y.)
| | | | - Dongling Ma
- Centre Énergie Materiaux et Telécommunications, Institut National de la Recherche Scientifique (INRS), Varennes, QC J3X 1P7, Canada; (Z.K.B.); (A.Y.)
| |
Collapse
|
5
|
Mukherjee A, Ahn YH. A downstream process control tool based on the redox dye resazurin for rapid and accurate measurement of microbial metabolic activity. Anal Bioanal Chem 2023; 415:5539-5550. [PMID: 37401963 DOI: 10.1007/s00216-023-04828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
Many sophisticated water treatment plants need a reliable, fast, and economical microbial load detection method. We refined a colorimetric assay using the redox dye resazurin to assess viable microorganisms. Here, we have used a mixed bacterial suspension of significant multi-drug-resistant coliform bacteria isolated from hospital wastewater and constructed a resazurin reduction calibration curve which could accurately predict the level of microbial contamination. The number of viable microorganisms was calculated from calibration curve in terms of log colony forming units (CFU) per milliliter. Ultrasonication disinfection of bacterial suspension for a duration of 50 min measured by resazurin assay depicted a reduction of 16.94%, 26.48%, and 37.69% at 410 W, 580 W, and 700 W, respectively. A synergistic effect of the combined methods of ultrasonication and heat disinfection treatments on raw wastewater and secondary wastewater effluent was observed and was also evaluated using both resazurin assay and standard plate count method. For raw wastewater, about 1.8 log reduction was observed for ultrasonication alone and 4 log CFU/mL reduction for thermosonication. In the secondary wastewater effluent, a reduction of 2.9 and 3.2 log CFU/mL was recorded for ultrasonication and thermosonication respectively. Resazurin microbial viability test results were highly comparable with conventional colony plate count for all treatment procedures, suggesting its appropriateness for quick and reliable wastewater sample microbial viability monitoring.
Collapse
Affiliation(s)
- Arkadeep Mukherjee
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
6
|
Mapukata S, Ntsendwana B, Mokhena T, Sikhwivhilu L. Advances on sonophotocatalysis as a water and wastewater treatment technique: efficiency, challenges and process optimisation. Front Chem 2023; 11:1252191. [PMID: 37681207 PMCID: PMC10482105 DOI: 10.3389/fchem.2023.1252191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Due to water shortage and increased water pollution, various methods are being explored to improve water quality by treating contaminants. Sonophotocatalysis is a combination of two individual water treatment processes i.e., photocatalysis and sonocatalysis. With advantages including shorter reaction times and enhanced activity, this technique shows possible futuristic applications as an efficient water treatment technology. Herein, background insight on sonophotocalysis as a water and wastewater treatment technique as well as the general mechanism of activity is explained. The commonly used catalysts for sonophotocatalytic applications as well as their synthesis pathways are also briefly discussed. Additionally, the utilisation of sonophotocatalysis for the disinfection of various microbial species as well as treatment of wastewater pollutants including organic (dyes, pharmaceuticals and pesticides) and inorganic species (heavy metals) is deliberated. This review also gives a critical analysis of the efficiency, enhancement strategies as well as challenges and outlooks in this field. It is thus intended to give insight to researchers in the context of facilitating future developments in the field of water treatment, and advancing sonophotocatalysis towards large-scale implementation and commercialization.
Collapse
Affiliation(s)
- Sivuyisiwe Mapukata
- Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Johannesburg, South Africa
| | - Bulelwa Ntsendwana
- Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Johannesburg, South Africa
| | - Teboho Mokhena
- Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Johannesburg, South Africa
| | - Lucky Sikhwivhilu
- Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Johannesburg, South Africa
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
7
|
Sadeghi Rad T, Sevval Yazici E, Khataee A, Gengec E, Kobya M. Tuned CuCr layered double hydroxide/carbon-based nanocomposites inducing sonophotocatalytic degradation of dimethyl phthalate. ULTRASONICS SONOCHEMISTRY 2023; 95:106358. [PMID: 36913781 PMCID: PMC10024049 DOI: 10.1016/j.ultsonch.2023.106358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
This study is the first to explore the possibility of utilizing CuCr LDH decorated on reduced graphene oxide (rGO) and graphene oxide (GO) as sonophotocatalysts for the degradation of dimethyl phthalate (DMP). CuCr LDH and its nanocomposites were successfully fabricated and characterized. Scanning electron microscopy (SEM) along with high-resolution transmission electron microscope (HRTEM) both evidenced the formation of randomly oriented nanosheet structures of CuCr LDH coupled with thin and folded sheets of GO and rGO. The impact of diverse processes on the degradation efficiency of DMP in the presence of the so-prepared catalysts was compared. Benefiting from the low bandgap and high specific surface area, the as-obtained CuCr LDH/rGO represented outstanding catalytic activity (100 %) toward 15 mg L-1 of DMP within 30 min when subjected to light and ultrasonic irradiations simultaneously. Radical quenching experiments and visual spectrophotometry using an O-phenylenediamine revealed the crucial role of hydroxyl radicals compared to holes and superoxide radicals. Overall, outcomes disclosed that CuCr LDH/rGO is a stable and proper sonophotocatalyst for environmental remediation.
Collapse
Affiliation(s)
- Tannaz Sadeghi Rad
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey
| | - Emine Sevval Yazici
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Erhan Gengec
- Department of Environmental Protection, University of Kocaeli, 41275 Izmit, Kocaeli, Turkey
| | - Mehmet Kobya
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey; Department of Environmental Engineering, Kyrgyz-Turkish Manas University, 720038 Bishkek, Kyrgyzstan
| |
Collapse
|