1
|
Shi T, Zhang J, Gao F, Cai D, Zhang Y. A sharp and selective fluorescence paper-based sensor based on inner filter effect for ratiometric detection of four Sudan dyes in food matrix. Food Chem 2024; 444:138528. [PMID: 38310775 DOI: 10.1016/j.foodchem.2024.138528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/06/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
The addition of Sudan dyes with carcinogenic effects to food threatens human health. Herein, a ratiometric fluorescence strip consisting of core-shell upconversion particles (NaYF4:Yb,Tm@NaYF4:Yb,Er), metal-organic frameworks and dual-template molecularly imprinted polymers was developed to selectively and sensitively detect four Sudan dyes based on inner filter effect (detection time only takes 8 min). The high adsorption capacity of metal-organic frameworks and the greater overlap between the emission of NaYF4:Yb,Tm@NaYF4:Yb,Er and the absorbance of four Sudan dyes enable the signal responses to be more sensitive. The limits of detection in chilli powder samples are as low as 29.87 ng/g, 37.55 ng/g, 47.89 ng/g and 51.02 ng/g, with satisfactory recovery (93.32-103.4%) and minor relative standard deviations (≤4.3%). This method broadens the idea for low-cost and portable detection of multiple illegal additives in complex substrates with high selectivity and sensitivity based on one kind of fluorescent strip.
Collapse
Affiliation(s)
- Tian Shi
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510006, China; School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Jinyuan Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510006, China; School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Fuhua Gao
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510006, China; School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Da Cai
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510006, China; School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yueli Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510006, China; School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China; School of Integrated Circuits, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Xue J, Tang F, Wang C, Yang J, Ding A. Tuning electronic structures of carbazole‐cyanostyrene molecules to achieve dual‐state emission for trace water analysis, picric acid sensing, and reversible mechanofluorochromism. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Xue
- Anhui University Chemistry and Chemical Engineering CHINA
| | | | - Chengyuan Wang
- Anhui University Chemistry and Chemical Engineering CHINA
| | - Jiaxiang Yang
- Anhui University College of Chemistry and Chemical Engineering jiulong road 230601 hefei CHINA
| | | |
Collapse
|
3
|
Kumar P, Kumar V, Kaur N, Mobin SM, Kaur P, Singh K. A fluorene based probe: Synthesis and "turn-on" water sensitivity of the in-situ formed Cu 2+ complex: Application in bio-imaging. Anal Chim Acta 2022; 1189:339211. [PMID: 34815050 DOI: 10.1016/j.aca.2021.339211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023]
Abstract
A new fluorene based probe (FTH) has been evaluated for its photo-physical properties in solution as well as in the aggregated state/viscous environment. Addition of a poor solvent (water) to the solution of the probe in a good (acetonitrile) solvent significantly enhanced the otherwise weak emission due to aggregation induced emission (AIE). The emission enhancement is also related to the increase in viscosity of the solution, leading to the restricted intramolecular rotation of the peripheral (phenyl) groups. Interestingly, the emission behaviour of the non-emissive in-situ formed Cu2+ complex is drastically modulated in the presence of water. The solution of the putative Cu2+ complex of the probe turns highly emissive (yellow colour) upon addition of a small fraction of water (up to 7.6 wt %), but the yellow emission diminishes upon increasing higher water fraction. We propose that the initially formed Cu2+ complex undergoes hydrolysis in the presence of higher water content releasing the free amine possessing the diaryl amino rotors thus rendering the solution non-emissive. Thus the current probe being reported herein discloses its potential to generate trace water sensitive turn-on Cu2+ complex. Additionally, the bio-imaging potential of FTH for live cancer cells and its sensitivity towards intracellular presence of Cu2+ ions has been demonstrated.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, UGC Centre of Advanced Study, Guru Nanak Dev University, Amritsar, 143005, India
| | - Virendra Kumar
- Department of Chemistry, UGC Centre of Advanced Study, Guru Nanak Dev University, Amritsar, 143005, India
| | - Navpreet Kaur
- Discipline of Bioscience and BioMedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Shaikh M Mobin
- Discipline of Bioscience and BioMedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India; Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India; Discipline of Metallurgy Engineering and Material Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Paramjit Kaur
- Department of Chemistry, UGC Centre of Advanced Study, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Kamaljit Singh
- Department of Chemistry, UGC Centre of Advanced Study, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
4
|
Madhu M, Tseng WL. NaCl nanocrystal-encapsulated carbon dots as a solution-based sensor for phosphorescent sensing of trace amounts of water in organic solvents. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4949-4954. [PMID: 34617522 DOI: 10.1039/d1ay01202a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The phosphorescence of solid-state carbon dots (CDs) has been demonstrated to be susceptible to water molecules. However, solution-based CDs have been rarely exploited for phosphorescence detection of trace amounts of water in organic solvents. Here, we present a straightforward method to embed the CDs into NaCl nanocrystals and show their application for phosphorescence detection of the water content in organic solvents. The phosphorescent CDs inside NaCl nanocrystals were fabricated by hydrothermal treatment of poly(diallyldimethylammonium) (PDDA) polymers and their counter chloride ions (Cl-) in the presence of NaOH. Because of the interaction with quaternary ammonium surface groups of PDDA-based CDs (PDDA-CDs), the Cl- ions serve as a nucleation site to trigger NaCl nanocrystal formation. Electron microscopy and spectroscopy techniques demonstrate the embedment of PDDA-CDs into NaCl nanocrystals (PDDA-CDs@NaCl). The PDDA-CDs@NaCl exhibited excitation-independent phosphorescence and excitation-dependent fluorescence in ethanol, methanol, dimethyl sulfoxide, and dimethylformamide. In four different organic solvents, the phosphorescence QYs and lasting times of PDDA-CDs@NaCl range from 23 to 35% and 1.2 to 1.5 s, respectively. Once trace amounts of water are present in an organic solvent, the water-induced dissolution of NaCl nanocrystals switches off the phosphorescence of PDDA-CDs@NaCl. It was found that PDDA-CDs@NaCl was capable of detecting as low as 0.25% v/v water in ethanol and 0.125% v/v water in methanol. The above-discussed results provide fundamental insights regarding the embedment of phosphorescent CDs into a solid matrix as a solution-based sensor.
Collapse
Affiliation(s)
- Manivannan Madhu
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lienhai Rd., Kaohsiung 80424, Taiwan, Republic of China.
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lienhai Rd., Kaohsiung 80424, Taiwan, Republic of China.
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Kaohsiung, 80708, Taiwan, Republic of China
| |
Collapse
|
5
|
Mishra S, Singh AK. Optical sensors for water and humidity and their further applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214063] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Fu H, Ma Y, Liu Y, Hong M. Local-structure-dependent luminescence in lanthanide-doped inorganic nanocrystals for biological applications. Chem Commun (Camb) 2021; 57:2970-2981. [DOI: 10.1039/d0cc07699f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This feature article overviews the recent advances in the local-structure-dependent luminescence in lanthanide-doped inorganic nanocrystals for various biological applications.
Collapse
Affiliation(s)
- Huhui Fu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Yuhan Ma
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Yongsheng Liu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|