1
|
Ding C, Meng X, Meng X, Ma S, Huo J, Chen Z, Guo F, Xie P. Development of the Colorimetric and/or Fluorescent Probes for Detecting Fluoride ions in Aqueous Solution. J Fluoresc 2024; 34:2451-2466. [PMID: 37856063 DOI: 10.1007/s10895-023-03446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
Fluoride ion is a strong Lewis base and one of the essential trace elements in human body. It plays a very important role in human health and ecological balance. The deficiency or excessive intake of fluoride ions will cause serious health problems, so the development of a sensitive and accurate detection method for fluoride ions is very important. The colorimetric and/or fluorescence sensing method has been a long standing attractive technique with high sensitivity and fast response. To date, most reported probes for fluoride ion are applicable only in organic solvents or organic-containing aqueous solutions. However, the probes for fluoride ion used in aqueous solution are more practically needed in view of environment protection and human health. In this paper, the materials and designing ideas of the colorimetric and/or fluorescent probes for fluoride ion based on different detection mechanisms in recent years were reviewed. Two main categories including formation of hydrogen bonds and formation of coordination covalent bonds were discussed. The latter one is further subdivided into three types, formation of B-F bond, formation of Si-F bond and formation of Mn+-F bond.
Collapse
Affiliation(s)
- Chenxi Ding
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, Henan Province, P. R. China
| | - Xiaoyi Meng
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, Henan Province, P. R. China
| | - Xinyi Meng
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, Henan Province, P. R. China
| | - Shihao Ma
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, Henan Province, P. R. China
| | - Jingzhu Huo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, Henan Province, P. R. China
| | - Zongwei Chen
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, Henan Province, P. R. China.
| | - Fengqi Guo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, Henan Province, P. R. China.
| | - Puhui Xie
- College of Sciences, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
| |
Collapse
|
2
|
Chang R, Chen CY, Gao L, Li Y, Lee ZH, Zhao H, Sue ACH, Chang KC. Highly selective Cu 2+ detection with a naphthalimide-functionalised pillar[5]arene fluorescent chemosensor. Org Biomol Chem 2024; 22:745-752. [PMID: 37982316 DOI: 10.1039/d3ob01558k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Ligand 1, a rim-differentiated pillar[5]arene macrocycle modified with five naphthalimide groups through click chemistry, serves as an effective ratiometric fluorescent chemosensor for Cu2+. In contrast to the monomeric naphthalimide control compound 2, which shows only monomer emission, ligand 1 demonstrates dual emission characteristics encompassing both the monomer and excimer of the naphthalimide moieties. The binding properties of ligand 1 toward 15 different metal ions were systematically investigated in CH2Cl2/CH3CN (v/v, 1 : 1) by UV-vis and fluorescence spectroscopy. Remarkably, ligand 1 exhibits exceptional selectivity for Cu2+ ions. Upon complexation with Cu2+, the excimer emission of ligand 1 diminishes, concomitant with an enhancement of its monomer emission. The binding ratio for 1·Cu2+ was determined to be 1 : 1, with an association constant of (3.39 ± 0.40) × 105 M-1 calculated using a nonlinear least-squares curve-fitting method. Furthermore, the limit of detection (LOD) was found to be 185 ± 7 nM. Our results from 1H NMR titration, high-resolution mass spectrometry analysis and density functional theory calculations of 1·Cu2+ suggest synergistic coordination between Cu2+ and the triazole groups on ligand 1.
Collapse
Affiliation(s)
- Rong Chang
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Chan-Yu Chen
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| | - Liya Gao
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Rd, Nankai District, Tianjin 300072, P. R. China
| | - Yana Li
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Zui-Harng Lee
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| | - Hongxia Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Rd, Nankai District, Tianjin 300072, P. R. China
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Kai-Chi Chang
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| |
Collapse
|
3
|
Hong LN, Cao HT, Feng YX, Guo LZ, Liu MQ, Zhang K, Mai X, Li N. Aggregation-caused dual-signal response of gold nanoclusters for ratiometric optical detection of cysteine. ANAL SCI 2023; 39:1719-1726. [PMID: 37405629 DOI: 10.1007/s44211-023-00385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023]
Abstract
Designing ratiometric sensors for cysteine (Cys) monitoring with high accuracy is of great significance for disease diagnosis and biomedical studies. The current ratiometric methods mainly rely on multiplex probes, which not only complicates the operation but also increases the cost, making it difficult for quantitative Cys detection in resource-limited areas. Herein, one-pot prepared gold nanoclusters (Au NCs) that glow red fluorescent were synthesized by employing glutathione as the stabilizer and reducing agent. When Fe3+ is present with Au NCs, the fluorescence is quenched and the scattering is strong because of the aggregation of Au NCs. With introduction of Cys, Cys can efficiently compete with glutathione-modified Au NCs for Fe3+, which leads to increase of fluorescence and decrease of scattering. The ratiometric determination of Cys can be thereby realized by collecting the fluorescence and SRS spectrum simultaneously. The linear range for Cys was 5-30 µM with a detection limit of 1.5 µM. In addition, the sensing system exhibits good selectivity for Cys and shows potential application in biological samples.
Collapse
Affiliation(s)
- Li-Na Hong
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Hui-Ting Cao
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yi-Xuan Feng
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Li-Zhen Guo
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Meng-Qian Liu
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Kun Zhang
- Jiangxi Academy of Emergency Management Science, NanChang, 330030, People's Republic of China
| | - Xi Mai
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Na Li
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
4
|
Zhang Y, Chen L, Du X, Yu X, Zhang H, Meng Z, Zheng Z, Chen J, Meng Q. Selective Fluorescent Sensing for Iron in Aqueous Solution by A Novel Functionalized Pillar[5]arene. ChemistryOpen 2023; 12:e202300109. [PMID: 37803382 PMCID: PMC10558425 DOI: 10.1002/open.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/21/2023] [Indexed: 10/08/2023] Open
Abstract
Iron ion is one of the most physiologically important elements in metabolic processes, indispensable for all living systems. Since its excess can lead to severe diseases, new approaches for its monitoring in water samples are urgently needed to meet requirements. Here, we firstly report a novel and universal route for the synthesis of a series of pillar[n]arene derivates containing one benzoquinone unit by photocatalysis. With this in hand, an anthracene - appended water - soluble pillar[5]arene (H) with excellent fluorescence sensing potency was prepared. H enabled the ultrasensitive detection of iron ions in aqueous solution with limits of detection of 10-8 M. Over a wide range of metal ions, H exhibited specific selectivity toward Fe3+ . More importantly, H could still properly operate in a simulated sewage sample, coexisting with multiple interference ions.
Collapse
Affiliation(s)
- Yahan Zhang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Longming Chen
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Xinbei Du
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Xiang Yu
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Han Zhang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Zhibing Zheng
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Junyi Chen
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryMinistry of EducationTianjin Key Laboratory of Structure andPerformance for Functional MoleculesCollege of ChemistryTianjin Normal UniversityTianjin300387P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| |
Collapse
|
5
|
Human telomeric G-quadruplex DNA enabled preferential recognition of copper (II) and Iron (III) ions sensed by a red emissive probe. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Fluorometric/electrochemical dual-channel sensors based on carbon quantum dots for the detection and information anti-counterfeiting. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Dehuri S, Mishra SK, Bag B. Chain length effect of spiro-ring N-alkylation on photophysical signalling parameters in Fe(III) selective rhodamine probes. Org Biomol Chem 2022; 20:3967-3979. [PMID: 35502831 DOI: 10.1039/d2ob00194b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manifestation of photophysical signalling parameters in rhodamine derivatives exhibiting complexation induced spiro-ring opening is crucial for the realization of selective metal ion detection at trace levels. Substitution of various functional groups, such as alkylation to the core architecture, modulates the physico-chemical properties of such molecular probes. Despite a few studies, relationships between the extent of photophysical signal modulations and the chain lengths of n-alkyl substituents are still elusive. In this investigation, a few molecular probes based on the rhodamine B (1-5) and rhodamine 6G (6-10) platform were synthesized by their derivatization with n-alkyl substituents of varying chain lengths at the amino-donor of their spiro-ring end, which exhibited Fe(III)-selective absorption and fluorescence 'off-on' signal transduction along with colorization of solution. The Fe(III)-selectivity in these probes remained the same despite their structural distinctions through varied n-alkyl chain lengths of the substituents; however, the quantifiable signalling parameters such as spectroscopic enhancement factors, sensitivity, the kinetics of spiro-ring opening and effectiveness of probe-Fe(III) interactions were analyzed. These parameters were also correlated in terms of the influence of different chain lengths of n-alkyl substituents that efficiently contributed to their inter-componential interactive stereo-electronic environment.
Collapse
Affiliation(s)
- Suryakanta Dehuri
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, Odisha, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Santosh Kumar Mishra
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, Odisha, India.
| | - Bamaprasad Bag
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, Odisha, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
8
|
Kursunlu AN, Bastug E, Oguz A, Oguz M, Yilmaz M. A highly branched macrocycle-based dual-channel sensor: Bodipy and pillar[5]arene combination for detection of Sn (II) &Hg (II) and bioimaging in living cells. Anal Chim Acta 2022; 1196:339542. [DOI: 10.1016/j.aca.2022.339542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023]
|
9
|
Affiliation(s)
- Roymon Joseph
- Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India – 682013
- Department of Chemistry University of Calicut Malappuram Kerala India – 673635
| |
Collapse
|
10
|
K. Muwal P, Mishra R, Pandey PS. Novel Bile Acid Based 1,2,3‐Triazole Receptors for Recognition of Acetate and Dihydrogen Phosphate Ions. ChemistrySelect 2020. [DOI: 10.1002/slct.202002339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Pradeep K. Muwal
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
- Department of Chemistry University of Rajasthan, Jaipur Rajasthan 302004 India
| | - Roli Mishra
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
- Department of Engineering and Physical Sciences Institute of Advanced Research, Gandhinagar Gujarat 382007 India
| | - Pramod S. Pandey
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
11
|
A blue/red dual-emitting multi-responsive fluorescent probe for Fe3+, Cu2+ and cysteine based on isophorone-antharecene. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|