1
|
Liu X, Ding Y, Shen Y, Liu S, Liu Y, Wang Y, Wang S, Gualerzi CO, Fabbretti A, Guan L, Kong L, Zhang H, Ma H, He C. Prokaryotic Expression and Functional Verification of Antimicrobial Peptide LR GG. Int J Mol Sci 2024; 25:7072. [PMID: 39000180 PMCID: PMC11241267 DOI: 10.3390/ijms25137072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
The antimicrobial peptide LRGG (LLRLLRRGGRRLLRLL-NH2) was designed and chemically synthesized in a study conducted by Jia et al. Gram-negative bacteria were found to be sensitive to LRGG and exhibited a high therapeutic index. Genetic engineering methods were used to create the prokaryotic fusion expression vector pQE-GFP-LRGG, and the resulting corresponding fusion protein GFP-LRGG was subsequently expressed and purified. The precursor GFP was then removed by TEV proteolysis, and pure LRGG was obtained after another round of purification and endotoxin removal. The prokaryotic-expressed antimicrobial peptide LRGG displays a broad-spectrum antibacterial effect on Gram-negative bacteria, and its minimum inhibitory activity (MIC) against Escherichia coli can reach 2 μg/mL. Compared to the chemically synthesized LRGG, the prokaryotic-expressed LRGG exhibits similar temperature, pH, salt ion, serum stability, and cell selectivity. Furthermore, prokaryotic-expressed LRGG showed excellent therapeutic effects in both the infection model of cell selectivity and no embryotoxicity in a Galleria mellonella infection model. The mechanism by which LRGG causes bacterial death was found to be the disruption of the Gram-negative cell membrane.
Collapse
Affiliation(s)
- Xiang Liu
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Yining Ding
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Yuhan Shen
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Sizhuo Liu
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Yuehua Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Yuting Wang
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Shikun Wang
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | | | - Attilio Fabbretti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Lili Guan
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Lingcong Kong
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Haipeng Zhang
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Hongxia Ma
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Chengguang He
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| |
Collapse
|
2
|
Behera S, Mumtaz S, Singh M, Mukhopadhyay K. Synergistic Potential of α-Melanocyte Stimulating Hormone Based Analogues with Conventional Antibiotic against Planktonic, Biofilm-Embedded, and Systemic Infection Model of MRSA. ACS Infect Dis 2023; 9:2436-2447. [PMID: 38009640 DOI: 10.1021/acsinfecdis.3c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The repotentiation of the existing antibiotics by exploiting the combinatorial potential of antimicrobial peptides (AMPs) with them is a promising approach to address the challenges of slow antibiotic development and rising antimicrobial resistance. In the current study, we explored the ability of lead second generation Ana-peptides viz. Ana-9 and Ana-10, derived from Alpha-Melanocyte Stimulating Hormone (α-MSH), to act synergistically with different classes of conventional antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). The peptides exhibited prominent synergy with β-lactam antibiotics, namely, oxacillin, ampicillin, and cephalothin, against planktonic MRSA. Furthermore, the lead combination of Ana-9/Ana-10 with oxacillin provided synergistic activity against clinical MRSA isolates. Though the treatment of MRSA is complicated by biofilms, the lead combinations successfully inhibited biofilm formation and also demonstrated biofilm disruption potential. Encouragingly, the peptides alone and in combination were able to elicit in vivo anti-MRSA activity and reduce the bacterial load in the liver and kidney of immune-compromised mice. Importantly, the presence of Ana-peptides at sub-MIC doses slowed the resistance development against oxacillin in MRSA cells. Thus, this study highlights the synergistic activity of Ana-peptides with oxacillin advocating for the potential of Ana-peptides as an alternative therapeutic and could pave the way for the reintroduction of less potent conventional antibiotics into clinical use against MRSA infections.
Collapse
Affiliation(s)
- Swastik Behera
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sana Mumtaz
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Madhuri Singh
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
3
|
He Z, Yang H, Wong NH, Ernawati L, Sunarso J, Huang Z, Xia Y, Wang Y, Su J, Fu X, Wu M. Construction of Cu 7 S 4 @CuCo 2 O 4 Yolk-Shell Microspheres Composite and Elucidation of Its Enhanced Photocatalytic Activity, Mechanism, and Pathway for Carbamazepine Degradation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207370. [PMID: 36765447 DOI: 10.1002/smll.202207370] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/18/2023] [Indexed: 05/04/2023]
Abstract
Water pollution caused by the massive use of medicines has caused significant environmental problems. This work first reports the synthesis and characterization of the Cu7 S4 /CuCo2 O4 (CS/CCO) yolk-shell microspheres via hydrothermal and annealing methods, and then investigates their photocatalytic performance in removing organic water pollutants. The 10-CS/CCO composite with yolk-shell microspheres exhibits the highest photodegradation rate of carbamazepine (CBZ), reaching 96.3% within 2 h. The 10-CS/CCO also demonstrates more than two times higher photodegradation rates than the pure (Cu7 S4 ) CS and (CuCo2 O4 ) CCO. This outstanding photocatalytic performance can be attributed to the unique yolk-shell structure and the Z-scheme charge transfer pathway, reducing multiple reflections of the acting light. These factors enhance the light absorption efficiency and efficiently transfer photoexcited charge carriers. In-depth, photocatalytic degradation pathways of CBZ are systematically evaluated via the identification of degradation intermediates with Fukui index calculation. The insights gained from this work can serve as a guideline for developing low-cost and efficient Z-scheme photocatalyst composites with the yolk-shell structure.
Collapse
Affiliation(s)
- Zuming He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, P. R. China
- Huaide School, Changzhou University, Jingjiang, 214500, P. R. China
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Hanpei Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, P. R. China
| | - Ngie Hing Wong
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, Kuching, Sarawak, 93350, Malaysia
| | - Lusi Ernawati
- Department of Chemical Engineering, Institut Teknologi Kalimantan, Balikpapan, 76127, Indonesia
| | - Jaka Sunarso
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, Kuching, Sarawak, 93350, Malaysia
| | - Zhengyi Huang
- Huaide School, Changzhou University, Jingjiang, 214500, P. R. China
| | - Yongmei Xia
- School of Materials and Engineering, Jiangsu University of Technology, Changzhou, 213001, P. R. China
| | - Yong Wang
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang, 318000, P. R. China
| | - Jiangbin Su
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Xiaofei Fu
- School of Materials and Engineering, Jiangsu University of Technology, Changzhou, 213001, P. R. China
| | - Mi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, P. R. China
| |
Collapse
|
4
|
Barman S, Chakraborty A, Saha S, Sikder K, Maitra Roy S, Modi B, Bahadur S, Khan AH, Manna D, Bag P, Sarkar AK, Bhattacharya R, Basu A, Maity AR. Efficient Synergistic Antibacterial Activity of α-MSH Using Chitosan-Based Versatile Nanoconjugates. ACS OMEGA 2023; 8:12865-12877. [PMID: 37065019 PMCID: PMC10099120 DOI: 10.1021/acsomega.2c08209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The application of antimicrobial peptides has emerged as an alternative therapeutic tool to encounter against multidrug resistance of different pathogenic organisms. α-Melanocyte stimulating hormone (α-MSH), an endogenous neuropeptide, is found to be efficient in eradicating infection of various kinds of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus (MRSA). However, the chemical stability and efficient delivery of these biopharmaceuticals (i.e., α-MSH) to bacterial cells with a significant antibacterial effect remains a key challenge. To address this issue, we have developed a chitosan-cholesterol polymer using a single-step, one-pot, and simple chemical conjugation technique, where α-MSH is loaded with a significantly high amount (37.7%), and the final product is obtained as chitosan-cholesterol α-MSH polymer-drug nanoconjugates. A staphylococcal growth inhibition experiment was performed using chitosan-cholesterol α-MSH and individual controls. α-MSH and chitosan-cholesterol both show bacterial growth inhibition by a magnitude of 50 and 79%, respectively. The killing efficiency of polymer-drug nanoconjugates was very drastic, and almost no bacterial colony was observed (∼100% inhibition) after overnight incubation. Phenotypic alternation was observed in the presence of α-MSH causing changes in the cell structure and shape, indicating stress on Staphylococcus aureus. As a further consequence, vigorous cell lysis with concomitant release of the cellular material in the nearby medium was observed after treatment of chitosan-cholesterol α-MSH nanoconjugates. This vigorous lysis of the cell structure is associated with extensive aggregation of the bacterial cells evident in scanning electron microscopy (SEM). The dose-response experiment was performed with various concentrations of chitosan-cholesterol α-MSH nanoconjugates to decipher the degree of the bactericidal effect. The concentration of α-MSH as low as 1 pM also shows significant inhibition of bacterial growth (∼40% growth inhibition) of Staphylococcus aureus. Despite playing an important role in inhibiting bacterial growth, our investigation on hemolytic assay shows that chitosan-cholesterol α-MSH is significantly nontoxic at a wide range of concentrations. In a nutshell, our analysis demonstrated novel antimicrobial activity of nanoparticle-conjugated α-MSH, which could be used as future therapeutics against multidrug-resistant Staphylococcus aureus and other types of bacterial cells.
Collapse
Affiliation(s)
- Sourav Barman
- Amity
Institute of Biotechnology, Amity University, Kolkata, West Bengal 700135, India
| | - Asmita Chakraborty
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Sujata Saha
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Kunal Sikder
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Sayoni Maitra Roy
- Amity
Institute of Biotechnology, Amity University, Kolkata, West Bengal 700135, India
| | - Barkha Modi
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Sabarnee Bahadur
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Ali Hossain Khan
- S.
N. Bose National Centre for Basic Sciences, Kolkata, West Bengal 700106, India
| | - Dipak Manna
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Pousali Bag
- Amity
Institute of Biotechnology, Amity University, Kolkata, West Bengal 700135, India
| | - Ankan Kumar Sarkar
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata, West Bengal 700032, India
| | - Rishi Bhattacharya
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Arnab Basu
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Amit Ranjan Maity
- Amity
Institute of Biotechnology, Amity University, Kolkata, West Bengal 700135, India
| |
Collapse
|
5
|
Mitra S, Mondal AH, Mukhopadhyay K. Mitigating the toxicity of palmitoylated analogue of α-melanocyte stimulating hormone(11-13) by conjugation with gold nanoparticle: characterisation and antibacterial efficacy against methicillin sensitive and resistant Staphylococccus aureus. World J Microbiol Biotechnol 2022; 38:186. [PMID: 35972627 PMCID: PMC9379238 DOI: 10.1007/s11274-022-03365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
Abstract
In an attempt to develop potent and non-toxic antimicrobial agent, the palmitoylated analogue of α-melanocyte stimulating hormone(11-13), Pal-α-MSH(11-13) was conjugated with gold nanoparticles (GNPs) for the first time and the efficacy of derived complex was investigated against two strains of Staphylococccus aureus. The GNPs were synthesized using tri-sodium citrate as reductant and Pal-α-MSH(11-13) was conjugated thereafter. The particles were characterised by UV-vis spectroscopy, transmission electron microscopy, dynamic light scattering, fourier transform infrared spectroscopy etc. Conjugation occurred via electrostatic interaction between anionic GNPs and cationic Pal-α-MSH(11-13). The zeta potential of GNP-Pal-α-MSH(11-13) was - 26.91, indicating its stability. The antibacterial activity was determined by minimal inhibitory concentration (MIC) and killing kinetics assay, whereas, inhibition of biofilm formation was studied by determining the biofilm biomass by crystal violet dye binding method, viability of biofilm-embedded cells by counting CFUs and metabolic activity by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The toxicity was analysed by hemolysis assay against murine RBCs and cytotoxicity against 3T3 fibroblasts. The MIC was 18 µM for GNP-Pal-α-MSH(11-13) and 12 µM for Pal-α-MSH(11-13). The killing kinetics and biofilm inhibition studies indicated the comparable efficacy of peptide before and after nano-conjugation. Importantly, the conjugation resulted in diminished toxicity, as evidenced by 0.29 ± 0.03% hemolysis and 100% viable fibroblasts at 72 µM compared to the Pal-α-MSH(11-13), showing 74.99 ± 1.59% hemolysis and 59.39 ± 1.06% viable fibroblasts. The nano-fabrication drastically reduced the peptide toxicity without compromising its antibacterial efficacy. The anionicity of the conjugate may be responsible for non-toxicity that makes them suitable for pharmaceutical applications.
Collapse
Affiliation(s)
- Sayani Mitra
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, 110067, New Delhi, India
| | - Aftab Hossain Mondal
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, 110067, New Delhi, India.,Department of Microbiology, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram-122505, Haryana, India
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, 110067, New Delhi, India.
| |
Collapse
|
6
|
Qiu M, Feng L, Zhao C, Gao S, Bao L, Zhao Y, Fu Y, Hu X. Commensal Bacillus subtilis from cow milk inhibits Staphylococcus aureus biofilm formation and mastitis in mice. FEMS Microbiol Ecol 2022; 98:6596871. [PMID: 35648454 DOI: 10.1093/femsec/fiac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/15/2022] [Accepted: 05/30/2022] [Indexed: 11/12/2022] Open
Abstract
The colonization and virulence production of Staphylococcus aureus (S. aureus), a known pathogen that induces mastitis, depend on its quorum-sensing (QS) system and biofilm formation. It has been reported that Bacillus can inhibit the QS system of S. aureus, thereby reducing S. aureus colonization in the intestine. However, whether Bacillus affects S. aureus biofilm formation and consequent colonization during mastitis is still unknown. In this study, the differences in the colonization of S. aureus and Bacillus were first analyzed by isolating and culturing bacteria from milk samples. It was found that the colonization of Bacillus and S. aureus in cow mammary glands was negatively correlated. Secondly, we found that although Bacillus did not affect S. aureus growth, it inhibited the biofilm formation of S. aureus by interfering its QS signaling. The most significant anti-biofilm effect was found in Bacillus subtilis H28 (B. subtilis H28). Finally, we found that B. subtilis H28 treatment alleviated S. aureus-induced mastitis in a mice model. Our results rerealed that bovine milk derived commensal Bacillus inhibited S. aureus colonization and alleviated S. aureus-induced mastitis by influencing biofilm formation, suggesting a potential targeted strategy to limit the colonization of S. aureus in vivo.
Collapse
Affiliation(s)
- Min Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Siyuan Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yihong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| |
Collapse
|