1
|
Dabous E, Alalem M, Awad AM, Elawdan KA, Tabl AM, Elsaka S, Said W, Guirgis AA, Khalil H. Regulation of KLRC and Ceacam gene expression by miR-141 supports cell proliferation and metastasis in cervical cancer cells. BMC Cancer 2024; 24:1091. [PMID: 39227808 PMCID: PMC11370040 DOI: 10.1186/s12885-024-12794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are single RNA molecules that act as global regulators of gene expression in mammalian cells and thus constitute attractive targets in treating cancer. Here we aimed to investigate the possible involvement of miRNA-141 (miR-141) in cervical cancer and to identify its potential targets in cervical cancer cell lines. METHODS The level of miR-141 in HeLa and C-33A cells has been assessed using the quantitative real-time PCR (qRT-PCR). A new miR-141 construct has been performed in a CMV promoter vector tagged with GFP. Using microarray analysis, we identified the potentially regulated genes by miR-141 in transfected HeLa cells. The protein profile of killer-like receptor C1 (KLRC1), KLRC3, carcinoembryonic antigen-related cell adhesion molecule 3 (CAM3), and CAM6 was investigated in HeLa cells transfected with either an inhibitor, antagonist miR-141, or miR-141 overexpression vector using immunoblotting and flow cytometry assay. Finally, ELISA assay has been used to monitor the produced cytokines from transfected HeLa cells. RESULTS The expression of miR-141 significantly increased in HeLa and C-33A cells compared to the normal cervical HCK1T cell line. Transfection of HeLa cells with an inhibitor, antagonist miR-141, showed a potent effect on cancer cell viability, unlike the transfection of miR-141 overexpression vector. The microarray data of HeLa cells overexpressed miR-141 provided a hundred of downregulated genes, including KLRC1, KLRC3, CAM3, and CAM6. KLRC1 and KLRC3 expression profiles markedly depleted in HeLa cells transfected with miR-141 overexpression accompanied by decreasing interleukin 8 (IL-8), indicating the role of miR-141 in avoiding programmed cells death in HeLa cells. Likewise, CAM3 and CAM6 expression reduced markedly in miR-141 transduced cells accompanied by an increasing level of transforming growth factor beta (TGF-β), indicating the impact of miR-141 in cancer cell migration. The IntaRNA program and miRWalk were used to check the direct interaction and potential binding sites between miR-141 and identified genes. Based on this, the seeding regions of each potential target was cloned upstream of the luciferase reporter gene in the pGL3 control vector. Interestingly, the luciferase activities of constructed vectors were significantly decreased in HeLa cells pre-transfected with miR-141 overexpression vector, while increasing enormously in cells pre-transfected with miR-141 specific inhibitor. CONCLUSION Together, these data uncover an efficient miR-141-based mechanism that supports cervical cancer progression and identifies miR-141 as a credible therapeutic target.
Collapse
Affiliation(s)
- Emad Dabous
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, P.O Box 79, Sadat City, Egypt
| | - Mai Alalem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, P.O Box 79, Sadat City, Egypt
| | - Ahmed M Awad
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, P.O Box 79, Sadat City, Egypt
| | - Khaled A Elawdan
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, P.O Box 79, Sadat City, Egypt
| | - Ahmed M Tabl
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, P.O Box 79, Sadat City, Egypt
| | - Shorouk Elsaka
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, P.O Box 79, Sadat City, Egypt
| | - Walid Said
- Microbiology and Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Adel A Guirgis
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, P.O Box 79, Sadat City, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, P.O Box 79, Sadat City, Egypt.
| |
Collapse
|
2
|
Awad AM, Dabous E, Alalem M, Alalem N, Nasr ME, Elawdan KA, Nasr GM, Said W, El Khashab K, Basiouny MS, Guirgis AA, Khalil H. MicroRNA-141-regulated KLK10 and TNFSF-15 gene expression in hepatoblastoma cells as a novel mechanism in liver carcinogenesis. Sci Rep 2024; 14:13492. [PMID: 38866875 PMCID: PMC11169620 DOI: 10.1038/s41598-024-63223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Liver cancer is one of the most pivotal global health problems, leading hepatocellular carcinoma (HCC) with a significant increase in cases worldwide. The role of non-coding-RNA in cancer proliferation and carcinogenesis has attracted much attention in the last decade; however, microRNAs (miRNAs), as non-coding RNA, are considered master mediators in various cancer progressions. Yet the role of miR-141 as a modulator for specific cellular processes in liver cancer cell proliferation is still unclear. This study identified the role of miR-141 and its potential functions in liver carcinogenesis. The level of miR-141 in HepG2 and HuH7 cells was assessed using quantitative real-time PCR (qRT-PCR) and compared with its expression in normal hepatocytes. A new miR-141 construct has been performed in a CMV promoter vector tagged with GFP. Using microarray analysis, we identified the potentially regulated genes by miR-141 in transfected HepG2 cells. The protein profile of the kallikrein-related peptidase 10 (KLK10) and tumor necrosis factor TNFSF-15 was investigated in HepG2 cells transfected with either an inhibitor, antagonist miR-141, or miR-141 overexpression vector using immunoblotting and flow cytometry assay. Finally, ELISA assay has been used to monitor the produced inflammatory cytokines from transfected HepG2 cells. Our findings showed that the expression of miR-141 significantly increased in HepG2 and HuH7 cells compared to the normal hepatocytes. Transfection of HepG2 cells with an inhibitor, antagonist miR-141, showed a significant reduction of HepG2 cell viability, unlike the transfection of miR-141 overexpression vector. The microarray data of HepG2 cells overexpressed miR-141 provided a hundred downregulated genes, including KLK10 and TNFSF-15. Furthermore, the expression profile of KLK10 and TNFSF-15 markedly depleted in HepG2 cells transfected with miR-141 overexpression accompanied by a decreasing level of interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α), indicating the role of miR-141 in HepG2 cell proliferation and programmed cell death. Interestingly, the experimental rats with liver cancer induced by Diethylnitrosamine injection further confirmed the upregulation of miR-141 level, IL-10, and TNF-α and the disturbance in KLK10 and TNFSF-15 gene expression compared with their expression in normal rats. The in-silico online tools, IntaRNA and miRWalk were used to confirm the direct interaction and potential binding sites between miR-141 and identified genes. Thus, the seeding regions of potential targeted sequences was cloned upstream of luciferase reporter gene in pGL3 control vector. Interestingly, the luciferase activities of constructed vectors were significantly decreased in HepG2 cells pre-transfected with miR-141 overexpression vector, while increasing in cells pre-transfected with miR-141 specific inhibitor. In summary, these data suggest the crucial role of miR-141 in liver cancer development via targeting KLK10 and TNFSF-15 and provide miR-141 as an attractive candidate in liver cancer treatment and protection.
Collapse
Affiliation(s)
- Ahmed M Awad
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Emad Dabous
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mai Alalem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Nedaa Alalem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mahmoud E Nasr
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Khaled A Elawdan
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ghada M Nasr
- Molecular Diagnostics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Walid Said
- Microbiology and Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Kareem El Khashab
- Medical Laboratory Department, High Technology Institute of Applied Health Science, Badr Academy for Science and Technology, Badr City, Egypt
| | - Mohamed S Basiouny
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Adel A Guirgis
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt.
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.
| |
Collapse
|
3
|
Tadros EK, Guirgis AA, Elimam H, Habib DF, Hanna H, Khalil H. Supplying rats with halfa-bar and liquorice extracts ameliorate doxorubicin-induced nephrotic syndrome. Nat Prod Res 2024:1-7. [PMID: 38795163 DOI: 10.1080/14786419.2024.2359552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/18/2024] [Indexed: 05/27/2024]
Abstract
In the current work, we aimed to evaluate the protective effects of liquorice and halfa-bar extract against doxorubicin (DOX)-induced nephritic syndrome (NS) in rats. Twenty albino male rats were intraperitoneally injected with 50 mg/kg of DOX. The injected rats were supplied daily with 400 mg/kg of liquorice, halfa-bar extract, or their combination for 2 weeks. Our findings confirmed the induction of NS in rats indicated by alteration in Bowman's space, damaged in glomerular capsules, and tubules. Moreover, the levels of produced tumour necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8) were increased, accompanied by decreasing levels of IL-4 and IL-10. Supplement NS-rats with liquorice and halfa-bar extracts restored the glomerular and tubules damage and adjusted the level of produced TNF-α and IL-8. Interestingly, both extracts can stimulate the expression profile of small proline-rich protein 2 F (sprr2f) and metalloproteinase-10 (MMP-10), which are responsible for repairing and regeneration mechanisms of renal syndromes.
Collapse
Affiliation(s)
- Emil K Tadros
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Adel A Guirgis
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Dawoud F Habib
- Department of Medical Biochemistry, National Research Center, Dokki, Egypt
| | - Hanan Hanna
- Department of Clinical Pathology, Faculty of Medicine, Delta University for Science and Technology, Dakahlia, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
4
|
Alharbi WS, Alshehri AA, Ahmed TA, Shadab M, Almehmady AM, Alshabibi MA, Altamimi RM, El-Say KM. Enhancing the Antiproliferative Activity of Perillyl Alcohol against Glioblastoma Cell Lines through Synergistic Formulation with Natural Oils. Curr Pharm Des 2024; 30:1075-1084. [PMID: 38532602 DOI: 10.2174/0113816128293758240318080527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Due to its volatility, photostability, and gastrointestinal toxicity, Perillyl Alcohol (POH), a monoterpenoid component of various plant species, is a chemotherapeutic drug with insufficient efficacy. Many naturally occurring bioactive compounds have well-known antiproliferative properties, including sefsol, jojoba, tea tree, and moringa oils. OBJECTIVE This study sought to develop an oil-based Self Nanoemulsifying Drug Delivery System (SNEDDS) using tween 80 as the surfactant and Dimethyl Sulfoxide (DMSO) or Polyethylene Glycol (PEG) 400 as the cosurfactant; the oils were used in a range of 10-20% to boost POH's anticancer efficacy. METHODS The formulations' size, charge, and impact on the viability of glioma cell lines, ANGM-CSS and A172, were evaluated. RESULTS The developed SNEDDS formulations ranged from 3 nm to 362 nm in size, with electronegative surface charges between 5.05 and 17.0 mV and polydispersity indices between 0.3 and 1.0. CONCLUSION The findings indicated that the antiproliferative effect of POH-loaded Nanoemulsion (NE) could be used as a possible anticancer therapy for glioblastoma in vitro, particularly when paired with the tested natural oils. Before asserting that this delivery technique is appropriate for glioblastoma therapy, additional in vitro and in vivo investigations are required.
Collapse
Affiliation(s)
- Waleed S Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah A Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md Shadab
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alshaimaa M Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Manal A Alshabibi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Reem M Altamimi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Salah A, Sleem R, Abd-Elaziz A, Khalil H. Regulation of NF-κB Expression by Thymoquinone; A Role in Regulating Pro-Inflammatory Cytokines and Programmed Cell Death in Hepatic Cancer Cells. Asian Pac J Cancer Prev 2023; 24:3739-3748. [PMID: 38019231 PMCID: PMC10772774 DOI: 10.31557/apjcp.2023.24.11.3739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND The miracle herb Nigella sativa (N. sativa) is a member of the Ranunculaceae family that possesses many properties, such as antioxidant, anticancer, analgesic, antibacterial, and anti-inflammatory. Thymoquinone (TQ) is the primary ingredient that makes up N. sativa, which is responsible for its many properties. So, our research focused on the biological role of TQ and its anticancer activities. METHODS A wide range of TQ concentrations (50µg/µl, 25µg/ µl, and 12.5µg µl) was prepared and evaluated for their potential regulatory role in cell lines of hepatocellular carcinoma (HepG2 cell line) compared with normal hepatocytes cells, untreated and DMSO-treated cells. RESULTS The more significant level of LDH obtained after TQ treatment compared to untreated cells provides evidence of the cytotoxic effects of TQ on HepG2 cells. Notably, the normal hepatocyte cells subjected to the same concentrations of TQ showed neglected influence in cell viability rate, indicating the selective regulatory role of TQ in cancer cell proliferation. Interestingly, as a critical mediator of malignancy transformation, the nuclear factor-kappa B expression level (NF-κB) significantly decreased in a time and dose-dependent manner of TQ treatment. Furthermore, we investigated whether TQ regulates the expression of deleted liver cancer 1 (DLC1) and Caspase 3 (Casp3). Notably, the treatment with TQ showed increased expression levels of DLC1 and Casp3 upon treatment. TQ extract sufficiently mediated the secretion of the released pro-inflammatory cytokines from treated cells. This regulation of released cytokines by TQ may affect the activation of NF-κB in treated cells. CONCLUSION These results indicate that TQ mediates the activation of Casp3, DLC1, and NF-κB, providing a new function of TQ in treating hepatocellular carcinoma (HCC).
Collapse
|
6
|
Xie K. PHLPP2: A Prognostic Biomarker in Adenocarcinoma of the Rectum. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:1099-1106. [PMID: 37737218 PMCID: PMC10645281 DOI: 10.5152/tjg.2023.23189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/10/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND/AIMS Adenocarcinoma of the rectum (READ) is typically diagnosed at advanced stages due to a lack of early-onset spe- cific features. MATERIALS AND METHODS The study used bioinformatics analysis of READ ribonucleic acid sequencing data from The Cancer Genome Atlas database to identify differentially expressed genes (DEGs). Overlapping genes between DEGs and autophagy-associated genes were screened for prognosis-associated DEGs, which were then validated in the OncoLnc database. RESULTS A total of 129 autophagy-associated DEGs were identified, with 17 genes found to be associated with READ prognosis. Multivariate Cox regression analysis revealed that only the PHLPP2 gene was significantly associated with READ prognosis (hazard ratio = 0.442, P = .026), and its low expression correlated with low survival in patients with brain lower-grade glioma (P = .00623) and pancreatic adenocarcinoma (P = .00109). CONCLUSIONS PHLPP2 expression may serve as a READ-specific prognostic biomarker and is involved in the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Keju Xie
- Department of Plastic Surgery, The Affiliated Hospital of Shaoxing University, Shaoxing Municipal Hospital, Shaoxing, China
| |
Collapse
|
7
|
Liu C, Chen H, Hu B, Shi J, Chen Y, Huang K. New insights into the therapeutic potentials of statins in cancer. Front Pharmacol 2023; 14:1188926. [PMID: 37484027 PMCID: PMC10359995 DOI: 10.3389/fphar.2023.1188926] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
The widespread clinical use of statins has contributed to significant reductions of cardiovascular morbidity and mortality. Increasing preclinical and epidemiological evidences have revealed that dyslipidemia is an important risk factor for carcinogenesis, invasion and metastasis, and that statins as powerful inhibitor of HMG-CoA reductase can exert prevention and intervention effects on cancers, and promote sensitivity to anti-cancer drugs. The anti-cancer mechanisms of statins include not only inhibition of cholesterol biosynthesis, but also their pleiotropic effects in modulating angiogenesis, apoptosis, autophagy, tumor metastasis, and tumor microenvironment. Moreover, recent clinical studies have provided growing insights into the therapeutic potentials of statins and the feasibility of combining statins with other anti-cancer agents. Here, we provide an updated review on the application potential of statins in cancer prevention and treatment and summarize the underneath mechanisms, with focuses on data from clinical studies.
Collapse
Affiliation(s)
- Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Bicheng Hu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajian Shi
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Tongji-RongCheng Biomedical Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Guirgis SA, El-Halfawy KA, Alalem M, Khalil H. Legionellapneumophila induces methylomic changes in ten-eleven translocation to ensure bacterial reproduction in human lung epithelial cells. J Med Microbiol 2023; 72. [PMID: 36927577 DOI: 10.1099/jmm.0.001676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Introduction. Legionella pneumophila is a Gram-negative flagellated bacteria that can infect human lungs and cause a severe form of pneumonia named Legionnaires' disease.Hypothesis. We hypothesize that L. pneumophila infection induces methylomic changes in methylcytosine dioxygenases, ten-eleven translocation (TET) genes, and controls DNA methylation following infection.Aim. In the current research, we sought to further investigate DNA methylation changes in human lung epithelial cells upon L. pneumophila infection and determine how methylation inhibitor agents disturb L. pneumophila reproduction.Methodology. A549 cell line was used in L. pneumophila infection and inhibitors' treatment, including 5-azacytidine (5-AZA) and (-)-epigallocatechin-3-O-gallate (EGCG).Results. Interestingly, DNA methylation analysis of infected A549 using sodium bisulfite PCR and the methylation-sensitive HpaII enzyme showed potential methylation activity within the promoter regions of ten-eleven translocation (TET) genes located on CpG/397-8 and CpG/385-6 of TET1 and TET3, respectively. Such methylation changes in TET effectors decreased their expression profile following infection, indicated by quantitative real-time PCR (RT-qPCR), immunoblotting and flow cytometry. Furthermore, pre-treatment of A549 cells with 5-AZA or EGCG significantly decreased the bacterial reproduction characterized by the expression of L. pneumophila 16S ribosomal RNA and the c.f.u. ml-1 of bacterial particles. Moreover, both methylation inhibitors showed potent inhibition of methionine synthase (MS) expression, which was further confirmed by the docking analysis of inhibitor ligands and crystal structure of MS protein.Conclusion. These data provide evidence for the methylomic changes in the promoter region of TET1 and TET3 by L. pneumophila infection in the A549 cell line and suggest the anti-bacterial properties of 5-AZA and EGCG, as methylation inhibitors, are due to targeting the epigenetic effector methionine synthase.
Collapse
Affiliation(s)
- Sherry A Guirgis
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Khalil A El-Halfawy
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Mai Alalem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| |
Collapse
|
9
|
Xu J, Zhang K, Zhang G. Prognostic Lysosome-Related Biomarkers for Predicting Drug Candidates in Hepatocellular Carcinoma: An Insilco Analysis. J Hepatocell Carcinoma 2023; 10:459-472. [PMID: 36974330 PMCID: PMC10039712 DOI: 10.2147/jhc.s401338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Background Lysosomes play an important role in enhancing tumorigenesis and chemoresistance in hepatocellular carcinoma (HCC). Therefore, a detailed analysis of the role of lysosome-related genes could improve the poor prognosis of HCC patients. Methods Lysosome-associated genes were downloaded from the GO and Genome Enrichment Analysis (GSEA) databases. After analyzing lysosome-associated differentially expressed genes (DEGs) between the TCGA and GTEx cohorts, we used univariate Cox regression, LASSO-Cox regression, stepwise Cox regression, and multivariate Cox regression analyses to build a predictive risk model. The ICGC cohort was used as a test cohort for the prognostic signature's validation. It was also assessed how significantly the signature affected the tumor microenvironment (TME) and sensitivity to immune checkpoint inhibitors. To investigate the expression of this signature in clinical samples, qRT-PCR and immunohistochemistry (IHC) were carried out in 50 normal tissues and 59 HCC tissues. Results A total of 894 lysosome-associated genes were obtained. After identifying 113 lysosome-associated DEGs, we constructed a five-gene prognostic signature (RRAGD, AP1M2, CRHBP, NCSTN, and SLCO4C1) that can be effectively applied to the prognostic classification of HCC patients in TCGA and ICGC cohorts. Additionally, we discovered that this signature can affect the proportion of macrophage infiltration in TME. We also evaluated several tumor-sensitive medicines that affect this signature. Finally, we discovered that HCC tissues had lower amounts of CRHBP compared to normal tissues by the qRT-PCR and IHC assay. Conclusion We developed and validated a predictive signature of five lysosome-related genes for HCC patients and verified the downregulation of CRHBP expression in clinical samples, which may provide fresh perspectives for customized immunotherapy.
Collapse
Affiliation(s)
- Junxiu Xu
- Department of Medical Laboratory, Zhengzhou University Fifth Affiliated Hospital, Zhengzhou, People’s Republic of China
| | - Kai Zhang
- Department of Medical Laboratory, Zhengzhou University Third Affiliated Hospital, Zhengzhou, People’s Republic of China
| | - Genhao Zhang
- Department of Blood Transfusion, Zhengzhou University First Affiliated Hospital, Zhengzhou, People’s Republic of China
- Correspondence: Genhao Zhang, Zhengzhou University First Affiliated Hospital, Jianshe Road 1#, Zhengzhou, 450052, People’s Republic of China, Email
| |
Collapse
|
10
|
Elawdan KA, Farouk S, Aref S, Shoaib H, El-Razik MA, Abbas NH, Younis M, Alshambky AA, Khalil H. Association of vitamin B12/ferritin deficiency in cancer patients with methylomic changes at promotors of TET methylcytosine dioxygenases. Biomark Med 2022; 16:959-970. [PMID: 36052661 DOI: 10.2217/bmm-2022-0158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To investigate potential DNA methylation in methylcytosine dioxygenases and correlation of TET genes with vitamin B12/ferritin levels in cancer patients. Materials & methods: 200 blood samples were obtained from both cancer patients and healthy individuals. Results: The expression of DNMT1, DNMT3a and DNMT3b was increased in patients with low vitamin B12 and ferritin levels, while the expression of MTR, TET1 and TET3 significantly decreased. DNA methylation analysis in patients with deficient vitamin B12/ferritin levels showed methylomic changes within the location 318/CG and 385/CG in the promoter region of TET1 and TET3, respectively. Conclusion: Vitamin B12/ferritin deficiency contributes to DNA methylation progress in cancer patients.
Collapse
Affiliation(s)
- Khaled A Elawdan
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Sabah Farouk
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Salah Aref
- Department of Clinical Pathology, Faculty of medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Hamada Shoaib
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Mohamed A El-Razik
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Nasser H Abbas
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Mohamed Younis
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Abeer A Alshambky
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt.,Biochemistry Department, Animal Health Research Institute, Cairo, 33374856, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
11
|
Novel Effects of Statins on Cancer via Autophagy. Pharmaceuticals (Basel) 2022; 15:ph15060648. [PMID: 35745567 PMCID: PMC9228383 DOI: 10.3390/ph15060648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is one of the main causes of death globally. Most of the molecular mechanisms underlying cancer are marked by complex aberrations that activate the critical cell-signaling pathways that play a pivotal role in cell metabolism, tumor development, cytoskeletal reorganization, and metastasis. The phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of the rapamycin (PI3K/AKT/mTOR) pathway is one of the main signaling pathways involved in carcinogenesis and metastasis. Autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation, plays a dual role in cancer, as either a tumor promoter or a tumor suppressor, depending on the stage of the carcinogenesis. Statins are the group of drugs of choice to lower the level of low-density lipoprotein (LDL) cholesterol in the blood. Experimental and clinical data suggest the potential of statins in the treatment of cancer. In vitro and in vivo studies have demonstrated the molecular mechanisms through which statins inhibit the proliferation and metastasis of cancer cells in different types of cancer. The anticancer properties of statins have been shown to result in the suppression of tumor growth, the induction of apoptosis, and autophagy. This literature review shows the dual role of the autophagic process in cancer and the latest scientific evidence related to the inducing effect exerted by statins on autophagy, which could explain their anticancer potential.
Collapse
|
12
|
Elimam H, Hussein J, Abdel-Latif Y, Abdel-Aziz AK, El-Say KM. Preclinical activity of fluvastatin-loaded self-nanoemulsifying delivery system against breast cancer models: Emphasis on apoptosis. J Cell Biochem 2022; 123:947-963. [PMID: 35342983 DOI: 10.1002/jcb.30238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 12/22/2022]
Abstract
Statins trigger apoptotic cell death in some types of growing tumor cells in a cholesterol-lowering-independent manner. Self-nanoemulsifying delivery systems (SNEDs) are potentially effective for the suppression of breast cancer development. This study aims to investigate the potential anticancer activity of fluvastatin (FLV)-SNEDs in breast cancer while comparing it with FLV in vitro as well as in vivo exploiting/using MDA-MB-231 and Erhlich ascites carcinoma (EAC)-bearing mice, respectively. Biochemical analysis of liver and kidney functions, oxidative stress markers, and histopathological examinations of such tumor tissues were performed showing the potentiality of SNEDs as a nanocarrier for antitumor agents. FLV-SNEDs demonstrated more potent anticancer activity compared to FLV on MDA-MB-231 and hepatocellular carcinoma (HepG2) cells. In vivo experiments on the EAC-bearing mice model indicated that FLV and-to a greater extent-FLV-SNEDs ameliorated EAC-induced hepatotoxicity and nephrotoxicity. FLV or FLV-SNEDs evidently reduced the percent of Ki-67 +ve EAC cells by 57.5% and 86.5% in comparison to the vehicle-treated EAC group. In addition, FLV or FLV-SNEDs decreased Bcl-2 levels in serum and liver specimens. In contrast, FLV or FLV-SNEDs significantly activated the executioner caspase-3. Simultaneously, both FLV and FLV-SNEDs stimulated p53 signaling and modulated Bcl-2 protein levels in treated cells. Collectively, these results support the contribution of apoptotic cell death in mediating the anticancer activities of FLV and FLV-SNEDs against murine EAC model in vivo. This study provides new understandings of how FLV and FLV-SNEDs regulate EAC cell viability via upregulation of p53 signaling, and through modulation of cleaved caspase-3 as well as antiapoptotic Bcl-2 marker.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt.,Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantara, Egypt
| | - Jihan Hussein
- Department of Medical Biochemistry, National Research Centre, Giza, Egypt
| | - Yasmin Abdel-Latif
- Department of Medical Biochemistry, National Research Centre, Giza, Egypt.,Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th of October, Giza, Egypt
| | - Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Nanoparticle-based drug delivery systems in cancer: A focus on inflammatory pathways. Semin Cancer Biol 2022; 86:860-872. [PMID: 35115226 DOI: 10.1016/j.semcancer.2022.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 12/16/2022]
Abstract
It has become necessary to accept the clinical reality of therapeutic agents targeting the cancer-associated immune system. In recent decades, several investigations have highlighted the role of inflammation in cancer development. It has now been recognized that inflammatory cells secrete mediators, including enzymes, chemokines, and cytokines. These secreted substances produce an inflammatory microenvironment that is critically involved in cancer growth. Inflammation may enhance genomic instability leading to DNA damage, activation of oncogenes, or compromised tumor suppressor activity, all of which may promote various phases of carcinogenesis. Conventional cancer treatment includes surgery, radiation, and chemotherapy. However, treatment failure occurs because current strategies are unable to achieve complete local control due to metastasis. Nanoparticles (NPs) are a broad spectrum of drug carriers typically below the size of 100 nm, targeting tumor sites while reducing off-target consequences. More importantly, NPs can stimulate innate and adaptive immune systems in the tumor microenvironment (TME); hence, they induce a cancer-fighting immune response. Strikingly, targeting cancer cells with NPs helps eliminate drug resistance and tumor recurrence, as well as prevents inflammation. Throughout this review, we provide recent data on the role of inflammation in cancer and explore nano-therapeutic initiatives to target significant mediators, for example, nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukins (ILs) associated with cancer-related inflammation, to escort the immunomodulators to cancer cells and associated systemic compartments. We also highlight the necessity of better identifying inflammatory pathways in cancer pathophysiology to develop effective treatment plans.
Collapse
|
14
|
Fekry T, Salem M, Abd-Elaziz A, Muawia S, Naguib Y, Khalil H. Anticancer Properties of Selenium-Enriched Mushroom, Pleurotus ostreatus, in Colon Cancer In-Vitro. Int J Med Mushrooms 2022; 24:1-20. [DOI: 10.1615/intjmedmushrooms.2022045181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Mahapatra KK, Mishra SR, Behera BP, Patil S, Gewirtz DA, Bhutia SK. The lysosome as an imperative regulator of autophagy and cell death. Cell Mol Life Sci 2021; 78:7435-7449. [PMID: 34716768 PMCID: PMC11071813 DOI: 10.1007/s00018-021-03988-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
Lysosomes are single membrane-bound organelles containing acid hydrolases responsible for the degradation of cellular cargo and maintenance of cellular homeostasis. Lysosomes could originate from pre-existing endolysosomes or autolysosomes, acting as a critical juncture between autophagy and endocytosis. Stress that triggers lysosomal membrane permeabilization can be altered by ESCRT complexes; however, irreparable damage to the membrane results in the induction of a selective lysosomal degradation pathway, specifically lysophagy. Lysosomes play an indispensable role in different types of autophagy, including microautophagy, macroautophagy, and chaperone-mediated autophagy, and various cell death pathways such as lysosomal cell death, apoptotic cell death, and autophagic cell death. In this review, we discuss lysosomal reformation, maintenance, and degradation pathways following the involvement of the lysosome in autophagy and cell death, which are related to several pathophysiological conditions observed in humans.
Collapse
Affiliation(s)
- Kewal Kumar Mahapatra
- Department of Life Science, Cancer and Cell Death Laboratory, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Soumya Ranjan Mishra
- Department of Life Science, Cancer and Cell Death Laboratory, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Bishnu Prasad Behera
- Department of Life Science, Cancer and Cell Death Laboratory, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, USA
| | - Sujit Kumar Bhutia
- Department of Life Science, Cancer and Cell Death Laboratory, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
16
|
El-Fadl HMA, Hagag NM, El-Shafei RA, Khayri MH, El-Gedawy G, Maksoud AIAE, Mohamed DD, Mohamed DD, El Halfawy I, Khoder AI, Elawdan KA, Elshal MF, Salah A, Khalil H. Effective Targeting of Raf-1 and Its Associated Autophagy by Novel Extracted Peptide for Treating Breast Cancer Cells. Front Oncol 2021; 11:682596. [PMID: 34513674 PMCID: PMC8430328 DOI: 10.3389/fonc.2021.682596] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/05/2021] [Indexed: 02/03/2023] Open
Abstract
Breast cancer is one of the most common causes of death in women worldwide and has harmful influence on their psychological state during therapy. Multikinase inhibitors have become effective drugs for treating a variety of cancer diseases such as breast cancer. A purified short peptide (H-P) was isolated from the natural honey and tested for its potential regulatory role in breast cancer cells compared with the effectiveness of the anticancer drug, Sorafenib (SOR), using MCF-7, EFM-19, and MCF-10A cell lines. Furthermore, we investigated the direct connection between Raf-1 activation and cellular autophagy as potential targets of SOR and H-P extract using RNA interference. Interestingly, the treatment with H-P showed competitive regulation of phosphorylated Raf-1, MEK1/2, and matched autophagy-related LC3B without any detectable toxic effects in the non-tumorigenic epithelial cells. Unlike SOR, the regulation of Raf-1 protein and autophagic machinery by the novel H-P extract showed neglected levels of the released proinflammatory cytokine. This regulation of cytokine secretion by H-P resulted in decreasing the expression level of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) in treated cells. Moreover, the transfection of MCF-7 cells with small interference RNA (siRNA) antagonist Raf-1 expression markedly reduced the expression of LC3B, while it increased the expression of NF-kB1 and NF-kB2, indicating the potential cross-link between Raf-1, autophagy, and NF-kB effector. Collectively, these findings suggest that H-P-mediated Raf-1, MEK1/2, LC3B, and NF-kB provide a novel and efficacious multikinase inhibitor for treating breast cancer without detectable cytotoxic effects.
Collapse
Affiliation(s)
- Hebatullah M. Abou El-Fadl
- Genome Department, Animal Health Research Institute, Cairo, Egypt
- Pharmacology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Naglaa M. Hagag
- Genome Department, Animal Health Research Institute, Cairo, Egypt
| | - Reham A. El-Shafei
- Pharmacology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed H. Khayri
- Pharmacology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Gamalat El-Gedawy
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menofyia University, Shebin El-Kom, Egypt
| | - Ahmed I. Abd El Maksoud
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Doaa D. Mohamed
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Dalia D. Mohamed
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ibrahim El Halfawy
- Department of Molecular Diagnostics, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ahmed I. Khoder
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Khaled A. Elawdan
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mohamed F. Elshal
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ahmed Salah
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
17
|
Bustos SO, Antunes F, Rangel MC, Chammas R. Emerging Autophagy Functions Shape the Tumor Microenvironment and Play a Role in Cancer Progression - Implications for Cancer Therapy. Front Oncol 2020; 10:606436. [PMID: 33324568 PMCID: PMC7724038 DOI: 10.3389/fonc.2020.606436] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment (TME) is a complex environment where cancer cells reside and interact with different types of cells, secreted factors, and the extracellular matrix. Additionally, TME is shaped by several processes, such as autophagy. Autophagy has emerged as a conserved intracellular degradation pathway for clearance of damaged organelles or aberrant proteins. With its central role, autophagy maintains the cellular homeostasis and orchestrates stress responses, playing opposite roles in tumorigenesis. During tumor development, autophagy also mediates autophagy-independent functions associated with several hallmarks of cancer, and therefore exerting several effects on tumor suppression and/or tumor promotion mechanisms. Beyond the concept of degradation, new different forms of autophagy have been described as modulators of cancer progression, such as secretory autophagy enabling intercellular communication in the TME by cargo release. In this context, the synthesis of senescence-associated secretory proteins by autophagy lead to a senescent phenotype. Besides disturbing tumor treatment responses, autophagy also participates in innate and adaptive immune signaling. Furthermore, recent studies have indicated intricate crosstalk between autophagy and the epithelial-mesenchymal transition (EMT), by which cancer cells obtain an invasive phenotype and metastatic potential. Thus, autophagy in the cancer context is far broader and complex than just a cell energy sensing mechanism. In this scenario, we will discuss the key roles of autophagy in the TME and surrounding cells, contributing to cancer development and progression/EMT. Finally, the potential intervention in autophagy processes as a strategy for cancer therapy will be addressed.
Collapse
Affiliation(s)
- Silvina Odete Bustos
- Instituto do Cancer do Estado de São Paulo, Faculdade de Medicina de São Paulo, Brazil
| | - Fernanda Antunes
- Instituto do Cancer do Estado de São Paulo, Faculdade de Medicina de São Paulo, Brazil
| | - Maria Cristina Rangel
- Instituto do Cancer do Estado de São Paulo, Faculdade de Medicina de São Paulo, Brazil
| | - Roger Chammas
- Instituto do Cancer do Estado de São Paulo, Faculdade de Medicina de São Paulo, Brazil
| |
Collapse
|
18
|
Khalil H, Abd ElHady A, Elawdan KA, Mohamed D, Mohamed DD, Abd El Maksoud AI, El-Chennawi FA, El-Fikiy B, El-Sayed IH. The Mechanical Autophagy as a Part of Cellular Immunity; Facts and Features in Treating the Medical Disorders. Immunol Invest 2020; 51:266-289. [PMID: 32993405 DOI: 10.1080/08820139.2020.1828453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is a cellular housekeeping process that incorporates lysosomal-degradation to maintain cell survival and energy sources. In recent decades, the role of autophagy has implicated in the initiation and development of many diseases that affect humanity. Among these diseases are autoimmune diseases and neurodegenerative diseases, which connected with the lacking autophagy. Other diseases are connected with the increasing levels of autophagy such as cancers and infectious diseases. Therefore, controlling autophagy with sufficient regulators could represent an effective strategy to overcome such diseases. Interestingly, targeting autophagy can also provide a sufficient method to combat the current epidemic caused by the ongoing coronavirus. In this review, we aim to highlight the physiological function of the autophagic process to understand the circumstances surrounding its role in the cellular immunity associated with the development of human diseases.
Collapse
Affiliation(s)
- Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Amira Abd ElHady
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Khaled A Elawdan
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Dalia Mohamed
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Doaa D Mohamed
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ahmed I Abd El Maksoud
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Farha A El-Chennawi
- Clinical Pathology Department, Faculty of Medicine, Mansora University, Mansora, Egypt
| | - Bhgat El-Fikiy
- Department of Animal Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ibrahim H El-Sayed
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
19
|
Kashapov R, Gaynanova G, Gabdrakhmanov D, Kuznetsov D, Pavlov R, Petrov K, Zakharova L, Sinyashin O. Self-Assembly of Amphiphilic Compounds as a Versatile Tool for Construction of Nanoscale Drug Carriers. Int J Mol Sci 2020; 21:E6961. [PMID: 32971917 PMCID: PMC7555343 DOI: 10.3390/ijms21186961] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022] Open
Abstract
This review focuses on synthetic and natural amphiphilic systems prepared from straight-chain and macrocyclic compounds capable of self-assembly with the formation of nanoscale aggregates of different morphology and their application as drug carriers. Since numerous biological species (lipid membrane, bacterial cell wall, mucous membrane, corneal epithelium, biopolymers, e.g., proteins, nucleic acids) bear negatively charged fragments, much attention is paid to cationic carriers providing high affinity for encapsulated drugs to targeted cells. First part of the review is devoted to self-assembling and functional properties of surfactant systems, with special attention focusing on cationic amphiphiles, including those bearing natural or cleavable fragments. Further, lipid formulations, especially liposomes, are discussed in terms of their fabrication and application for intracellular drug delivery. This section highlights several features of these carriers, including noncovalent modification of lipid formulations by cationic surfactants, pH-responsive properties, endosomal escape, etc. Third part of the review deals with nanocarriers based on macrocyclic compounds, with such important characteristics as mucoadhesive properties emphasized. In this section, different combinations of cyclodextrin platform conjugated with polymers is considered as drug delivery systems with synergetic effect that improves solubility, targeting and biocompatibility of formulations.
Collapse
Affiliation(s)
- Ruslan Kashapov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov street 8, Kazan 420088, Russia; (G.G.); (D.G.); (D.K.); (R.P.); (K.P.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | |
Collapse
|