1
|
Yin L, Li X, Wang R, Zeng Y, Zeng Z, Xie T. Recent Research Progress of RGD Peptide–Modified Nanodrug Delivery Systems in Tumor Therapy. Int J Pept Res Ther 2023; 29:53. [DOI: 10.1007/s10989-023-10523-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 01/06/2025]
Abstract
AbstractThere have been great advancements in targeted nanodrug delivery systems for tumor therapy. Liposomes, polymeric nanoparticles, and inorganic nanoparticles are commonly employed as nanocarriers for drug delivery, and it has been found that arginine glycine aspartic acid (RGD) peptides and their derivatives can be used as ligands of integrin receptors to enhance the direct targeting ability. In this paper, we review the recent applications of RGD-modified liposomes, polymeric nanoparticles, and inorganic nanocarriers in cancer diagnosis and treatment, discuss the current challenges and prospects, and examine the progress made by the latest research on RGD peptide–modified nano delivery systems in cancer therapy. In recent years, RGD peptide–modified nanodrug delivery systems have been proven to have great potential in tumor therapy. Finally, we provide an overview of the current limitations and future directions of RGD peptide–modified nano-drug delivery systems for cancer therapy. This review aims to elucidate the contribution of RGD peptide–modified nanodrug delivery systems in the field of tumor therapy.
Collapse
|
2
|
Itzhaki E, Elias Y, Moskovits N, Stemmer SM, Margel S. Proteinoid Polymers and Nanocapsules for Cancer Diagnostics, Therapy and Theranostics: In Vitro and In Vivo Studies. J Funct Biomater 2023; 14:jfb14040215. [PMID: 37103305 PMCID: PMC10145953 DOI: 10.3390/jfb14040215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
Proteinoids-simple polymers composed of amino acids-were suggested decades ago by Fox and coworkers to form spontaneously by heat. These special polymers may self-assemble in micrometer structures called proteinoid microspheres, presented as the protocells of life on earth. Interest in proteinoids increased in recent years, in particular for nano-biomedicine. They were produced by stepwise polymerization of 3-4 amino acids. Proteinoids based on the RGD motif were prepared for targeting tumors. Nanocapsules form by heating proteinoids in an aqueous solution and slowly cooling to room temperature. Proteinoid polymers and nanocapsules suit many biomedical applications owing to their non-toxicity, biocompatibility and immune safety. Drugs and/or imaging reagents for cancer diagnostic, therapeutic and theranostic applications were encapsulated by dissolving them in aqueous proteinoid solutions. Here, recent in vitro and in vivo studies are reviewed.
Collapse
Affiliation(s)
- Ella Itzhaki
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yuval Elias
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Neta Moskovits
- Felsenstein Medical Research Center, Petah Tikva 49100, Israel
| | - Salomon M Stemmer
- Felsenstein Medical Research Center, Petah Tikva 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shlomo Margel
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
3
|
Egorova EA, Nikitin MP. Delivery of Theranostic Nanoparticles to Various Cancers by Means of Integrin-Binding Peptides. Int J Mol Sci 2022; 23:ijms232213735. [PMID: 36430214 PMCID: PMC9696485 DOI: 10.3390/ijms232213735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Active targeting of tumors is believed to be the key to efficient cancer therapy and accurate, early-stage diagnostics. Active targeting implies minimized off-targeting and associated cytotoxicity towards healthy tissue. One way to acquire active targeting is to employ conjugates of therapeutic agents with ligands known to bind receptors overexpressed onto cancer cells. The integrin receptor family has been studied as a target for cancer treatment for almost fifty years. However, systematic knowledge on their effects on cancer cells, is yet lacking, especially when utilized as an active targeting ligand for particulate formulations. Decoration with various integrin-targeting peptides has been reported to increase nanoparticle accumulation in tumors ≥ 3-fold when compared to passively targeted delivery. In recent years, many newly discovered or rationally designed integrin-binding peptides with excellent specificity towards a single integrin receptor have emerged. Here, we show a comprehensive analysis of previously unreviewed integrin-binding peptides, provide diverse modification routes for nanoparticle conjugation, and showcase the most notable examples of their use for tumor and metastases visualization and eradication to date, as well as possibilities for combined cancer therapies for a synergetic effect. This review aims to highlight the latest advancements in integrin-binding peptide development and is directed to aid transition to the development of novel nanoparticle-based theranostic agents for cancer therapy.
Collapse
Affiliation(s)
- Elena A. Egorova
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sirius, Russia
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 1 Meditsinskaya Str., 603081 Nizhny Novgorod, Russia
| | - Maxim P. Nikitin
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sirius, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia
- Correspondence:
| |
Collapse
|
4
|
Itzhaki E, Hadad E, Moskovits N, Stemmer SM, Margel S. Tumor-Targeted Fluorescent Proteinoid Nanocapsules Encapsulating Synergistic Drugs for Personalized Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:648. [PMID: 34358074 PMCID: PMC8308547 DOI: 10.3390/ph14070648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Personalized cancer treatment based on specific mutations offers targeted therapy and is preferred over "standard" chemotherapy. Proteinoid polymers produced by thermal step-growth polymerization of amino acids may form nanocapsules (NCs) that encapsulate drugs overcoming miscibility problems and allowing passive targeted delivery with reduced side effects. The arginine-glycine-glutamic acid (RGD) sequence is known for its preferential attraction to αvβ3 integrin, which is highly expressed on neovascular endothelial cells that support tumor growth. Here, tumor-targeted RGD-based proteinoid NCs entrapping a synergistic combination of Palbociclib (Pal) and Alpelisib (Alp) were synthesized by self-assembly to induce the reduction of tumor cell growth in different types of cancers. The diameters of the hollow and drug encapsulating poly(RGD) NCs were 34 ± 5 and 22 ± 3 nm, respectively; thereby, their drug targeted efficiency is due to both passive and active targeting. The encapsulation yield of Pal and Alp was 70 and 90%, respectively. In vitro experiments with A549, MCF7 and HCT116 human cancer cells demonstrate a synergistic effect of Pal and Alp, controlled release and dose dependence. Preliminary results in a 3D tumor spheroid model with cells derived from patient-derived xenografts of colon cancer illustrate disassembly of spheroids, indicating that the NCs have therapeutic potential.
Collapse
Affiliation(s)
- Ella Itzhaki
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.I.); (E.H.)
| | - Elad Hadad
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.I.); (E.H.)
| | - Neta Moskovits
- Davidoff Center, Rabin and Felsenstein Medical Center, Beilinson Campus, Petach Tikva 49100, Israel; (N.M.); (S.M.S.)
| | - Salomon M. Stemmer
- Davidoff Center, Rabin and Felsenstein Medical Center, Beilinson Campus, Petach Tikva 49100, Israel; (N.M.); (S.M.S.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shlomo Margel
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.I.); (E.H.)
| |
Collapse
|
5
|
Hadad E, Rudnick-Glick S, Itzhaki E, Avivi MY, Grinberg I, Elias Y, Margel S. Engineering of Doxorubicin-Encapsulating and TRAIL-Conjugated Poly(RGD) Proteinoid Nanocapsules for Drug Delivery Applications. Polymers (Basel) 2020; 12:E2996. [PMID: 33339090 PMCID: PMC7765502 DOI: 10.3390/polym12122996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 01/13/2023] Open
Abstract
Proteinoids are non-toxic biodegradable polymers prepared by thermal step-growth polymerization of amino acids. Here, P(RGD) proteinoids and proteinoid nanocapsules (NCs) based on D-arginine, glycine, and L-aspartic acid were synthesized and characterized for targeted tumor therapy. Doxorubicin (Dox), a chemotherapeutic drug used for treatment of a wide range of cancers, known for its adverse side effects, was encapsulated during self-assembly to form Dox/P(RGD) NCs. In addition, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which can initiate apoptosis in most tumor cells but undergoes fast enzyme degradation, was stabilized by covalent conjugation to hollow P(RGD) NCs. The effect of polyethylene glycol (PEG) conjugation was also studied. Cytotoxicity tests on CAOV-3 ovarian cancer cells demonstrated that Dox/P(RGD) and TRAIL-P(RGD) NCs were as effective as free Dox and TRAIL with cell viability of 2% and 10%, respectively, while PEGylated NCs were less effective. Drug-bearing P(RGD) NCs offer controlled release with reduced side effects for improved therapy.
Collapse
Affiliation(s)
- Elad Hadad
- Department of Chemistry, Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel; (E.H.); (S.R.-G.); (E.I.); (I.G.); (Y.E.)
| | - Safra Rudnick-Glick
- Department of Chemistry, Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel; (E.H.); (S.R.-G.); (E.I.); (I.G.); (Y.E.)
| | - Ella Itzhaki
- Department of Chemistry, Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel; (E.H.); (S.R.-G.); (E.I.); (I.G.); (Y.E.)
| | - Matan Y. Avivi
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel;
| | - Igor Grinberg
- Department of Chemistry, Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel; (E.H.); (S.R.-G.); (E.I.); (I.G.); (Y.E.)
| | - Yuval Elias
- Department of Chemistry, Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel; (E.H.); (S.R.-G.); (E.I.); (I.G.); (Y.E.)
| | - Shlomo Margel
- Department of Chemistry, Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel; (E.H.); (S.R.-G.); (E.I.); (I.G.); (Y.E.)
| |
Collapse
|