1
|
Zhang X, Chen Y, Zhou S, Liu Y, Zhu S, Jia X, Lu Z, Zhang Y, Zhang W, Ye Z, Cai B, Kong L, Liu F. RNA Coating Promotes Peri-Implant Osseointegration. ACS Biomater Sci Eng 2024; 10:7030-7042. [PMID: 38943625 PMCID: PMC11558559 DOI: 10.1021/acsbiomaterials.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
In addition to transmitting and carrying genetic information, RNA plays an important abiotic role in the world of nanomaterials. RNA is a natural polyanionic biomacromolecule, and its ability to promote osteogenesis by binding with other inorganic materials as an osteogenic induction agent was discovered only recently. However, whether it can promote osseointegration on implants has not been reported. Here, we investigated the effect of the RNA-containing coating materials on peri-implant osseointegration. Total RNA extracted from rat muscle tissue was used as an osteogenic induction agent, and hyaluronic acid (HA) was used to maintain its negative charge. In simulated body fluids (SBF), in vitro studies demonstrated that the resulting material encouraged calcium salt deposition. Cytological experiments showed that the RNA-containing coating induced greater cell adhesion and osteogenic differentiation in comparison to the control. The results of animal experiments showed that the RNA-containing coating had osteoinductive and bone conduction activities, which are beneficial for bone formation and osseointegration. Therefore, the RNA-containing coatings are useful for the surface modification of titanium implants to promote osseointegration.
Collapse
Affiliation(s)
- Xiao Zhang
- College
of Life Sciences, Northwest University, Xi’an 710069, China
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Yicheng Chen
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Shanluo Zhou
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Ya Liu
- College
of Life Sciences, Northwest University, Xi’an 710069, China
| | - Simin Zhu
- College
of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xuelian Jia
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Zihan Lu
- College
of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yufan Zhang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Wenhui Zhang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Zhou Ye
- Applied
Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, S.A.R., China
| | - Bolei Cai
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Liang Kong
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Fuwei Liu
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| |
Collapse
|
2
|
Ezhumalai N, Nanthagopal M, Kasthuri J, Rajendiran N. Synthesis of N-acetylcysteine functionalized cholic acid based triarmed poly DL-Lactide and encapsulation of gold nanoparticles: Studies on the antimicrobial activity and biocompatibility for drug delivery applications. Int J Biol Macromol 2024; 279:135085. [PMID: 39197626 DOI: 10.1016/j.ijbiomac.2024.135085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Cholic acid based biodegradable reverse polymeric micelles have been widely utilized as preclinically suitable drug delivery system for poorly water-soluble drugs. In this report, we developed N-acetylcysteine functionalized cholic acid based triarmed poly (Dl-lactide) (ACyCA-triarmed (DLL)n as reversed polymeric micelles for drug delivery studies. ACyCA was synthesized via thiol-yne click reaction and subsequently used as an initiator for the synthesis of ACyCA-triarmed (DLL)n through ring opening polymerization (ROP) using Sn (Oct)2 as a catalyst. The synthesized ACyCA-triarmed (DLL)n was characterized using GPC, FT-IR, 1H NMR, 13C NMR, spectrofluorometer, HR-TEM, DSC, TGA, XRD, DLS, and zeta potential techniques. The reverse critical micellar concentration of the polymer was determined to be 1.99 mg/mL using a spectrofluorometer. The synthesized reverse micelles (RMs) were utilized as a reducing and capping agent for the preparation of AuNPs under sunlight exposure. The formed AuNPs exhibited spherical in shape with an average size of ∼ 23.4 nm and Dh was found to be 86.8 ± 1.3 nm as evidenced by the TEM and DLS analysis. Furthermore, the antimicrobial activity, hemolytic activity, anti-oxidant activity, and in-vitro drug release studies were examined for the RMs-AuNPs and compared with RMs. The hydrophobic nature of RMs and RMs-AuNPs had better haemocompatibility at above the reversed CMC. The antioxidant activity RMs-AuNPs showed better inhibitory effect in a dose-dependent manner as compared to RMs. The RMs-AuNPs formulation act as reservoir for solubilization of hydrophobic doxorubicin (Dox.HCl) drugs and can be used as therapeutic platform for slow and sustained release of drugs in biological medium.
Collapse
Affiliation(s)
- Nishanthi Ezhumalai
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Manivannan Nanthagopal
- Department of Microbiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, India
| | - Jayapalan Kasthuri
- Department of Chemistry, Quaid-E-Millath Government College for Women, Chennai 600002, Tamil Nadu, India
| | - Nagappan Rajendiran
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India.
| |
Collapse
|
3
|
Park G, Matsuura T, Komatsu K, Ogawa T. Optimizing implant osseointegration, soft tissue responses, and bacterial inhibition: A comprehensive narrative review on the multifaceted approach of the UV photofunctionalization of titanium. J Prosthodont Res 2024:JPR_D_24_00086. [PMID: 38853001 DOI: 10.2186/jpr.jpr_d_24_00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Titanium implants have revolutionized restorative and reconstructive therapy, yet achieving optimal osseointegration and ensuring long-term implant success remain persistent challenges. In this review, we explore a cutting-edge approach to enhancing implant properties: ultraviolet (UV) photofunctionalization. By harnessing UV energy, photofunctionalization rejuvenates aging implants, leveraging and often surpassing the intrinsic potential of titanium materials. The primary aim of this narrative review is to offer an updated perspective on the advancements made in the field, providing a comprehensive overview of recent findings and exploring the relationship between UV-induced physicochemical alterations and cellular responses. There is now compelling evidence of significant transformations in titanium surface chemistry induced by photofunctionalization, transitioning from hydrocarbon-rich to carbon pellicle-free surfaces, generating superhydrophilic surfaces, and modulating the electrostatic properties. These changes are closely associated with improved cellular attachment, spreading, proliferation, differentiation, and, ultimately, osseointegration. Additionally, we discuss clinical studies demonstrating the efficacy of UV photofunctionalization in accelerating and enhancing the osseointegration of dental implants. Furthermore, we delve into recent advancements, including the development of one-minute vacuum UV (VUV) photofunctionalization, which addresses the limitations of conventional UV methods as well as the newly discovered functions of photofunctionalization in modulating soft tissue and bacterial interfaces. By elucidating the intricate relationship between surface science and biology, this body of research lays the groundwork for innovative strategies aimed at enhancing the clinical performance of titanium implants, marking a new era in implantology.
Collapse
Affiliation(s)
- Gunwoo Park
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| |
Collapse
|
4
|
Zhang WS, Liu Y, Shao SY, Shu CQ, Zhou YH, Zhang SM, Qiu J. Surface characteristics and in vitro biocompatibility of titanium preserved in a vitamin C-containing saline storage solution. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:3. [PMID: 38206387 PMCID: PMC10784388 DOI: 10.1007/s10856-023-06769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
The purpose of this study is to explore a storage solution for titanium implants and investigate its osteogenic properties. The commercial pure titanium (cp-Ti) surface and double-etched (SLA) titanium surface specimens were preserved in air, saline, 10 mM Vitamin C (VitC)-containing saline and 100 mM VitC-containing saline storage solutions for 2 weeks. The surface microtopography of titanium was observed by scanning electron microscopy (SEM), the surface elemental compositions of the specimens were analyzed by Raman and X-ray photoelectron spectroscopy (XPS), and water contact angle and surface roughness of the specimens were tested. The protein adsorption capacity of two titanium surfaces after storage in different media was examined by BCA kit. The MC3T3-E1 osteoblasts were cultured on two titanium surfaces after storage in different media, and the proliferation, adhesion and osteogenic differentiation activity of osteoblasts were detected by CCK-8, laser confocal microscope (CLSM) and Western blot. The SEM results indicated that the titanium surfaces of the air group were relatively clean while scattered sodium chloride or VitC crystals were seen on the titanium surfaces of the other three groups. There were no significant differences in the micromorphology of the titanium surfaces among the four groups. Raman spectroscopy detected VitC crystals on the titanium surfaces of two experimental groups. The XPS, water contact angle and surface roughness results suggested that cp-Ti and SLA-Ti stored in 0.9% NaCl and two VitC-containing saline storage solutions possessed less carbon contamination and higher surface hydrophilicity. Moreover, the protein adsorption potentials of cp-Ti and SLA-Ti surfaces were significantly improved under preservation in two VitC-containing saline storage solutions. The results of in vitro study showed that the preservation of two titanium surfaces in 100 mM VitC-containing saline storage solution upregulated the cell adhesion, proliferation, osteogenic related protein expressions of MC3T3-E1 osteoblasts. In conclusion, preservation of cp-Ti and SLA-Ti in 100 mM VitC-containing saline storage solution could effectively reduce carbon contamination and enhance surface hydrophilicity, which was conducive to osteogenic differentiation of osteoblasts.
Collapse
Affiliation(s)
- Wen-Si Zhang
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China
| | - Yao Liu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China
| | - Shui-Yi Shao
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China
| | - Chang-Qing Shu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China
| | - Yi-Heng Zhou
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China
| | - Song-Mei Zhang
- Department of Comprehensive Care, Tufts University School of Dental Medicine Boston, Boston, MA, USA
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, PR China.
| |
Collapse
|
5
|
Dhall A, Islam S, Park M, Zhang Y, Kim A, Hwang G. Bimodal Nanocomposite Platform with Antibiofilm and Self-Powering Functionalities for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40379-40391. [PMID: 34406755 PMCID: PMC8548987 DOI: 10.1021/acsami.1c11791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Advances in microelectronics and nanofabrication have led to the development of various implantable biomaterials. However, biofilm-associated infection on medical devices still remains a major hurdle that substantially undermines the clinical applicability and advancement of biomaterial systems. Given their attractive piezoelectric behavior, barium titanate (BTO)-based materials have also been used in biological applications. Despite its versatility, the feasibility of BTO-embedded biomaterials as anti-infectious implantable medical devices in the human body has not been explored yet. Here, the first demonstration of clinically viable BTO-nanocomposites is presented. It demonstrates potent antibiofilm properties against Streptococcus mutans without bactericidal effect while retaining their piezoelectric and mechanical behaviors. This antiadhesive effect led to ∼10-fold reduction in colony-forming units in vitro. To elucidate the underlying mechanism for this effect, data depicting unfavorable interaction energy profiles between BTO-nanocomposites and S. mutans using the classical and extended Derjaguin, Landau, Verwey, and Overbeek theories is presented. Direct cell-to-surface binding force data using atomic force microscopy also corroborate reduced adhesion between BTO-nanocomposites and S. mutans. Interestingly, the poling process on BTO-nanocomposites resulted in asymmetrical surface charge density on each side, which may help tackle two major issues in prosthetics-bacterial contamination and tissue integration. Finally, BTO-nanocomposites exhibit superior biocompatibility toward human gingival fibroblasts and keratinocytes. Overall, BTO-embedded composites exhibit broad-scale potential to be used in biological settings as energy-harvestable antibiofilm surfaces.
Collapse
Affiliation(s)
- Atul Dhall
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sayemul Islam
- Department of Electrical and Computer Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Moonchul Park
- Department of Electrical and Computer Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Yu Zhang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Albert Kim
- Department of Electrical and Computer Engineering, Temple University, Philadelphia, PA 19122, USA
- Corresponding Authors: Geelsu Hwang, ; Albert Kim,
| | - Geelsu Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding Authors: Geelsu Hwang, ; Albert Kim,
| |
Collapse
|