1
|
Sebastian K K, Singh AK, Biswas A. Strontium doped 58S bioglass incorporated chitosan/gelatin porous scaffold for bone tissue engineering applications. Int J Biol Macromol 2024; 283:136983. [PMID: 39471925 DOI: 10.1016/j.ijbiomac.2024.136983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
Bioglass (Bg) is accepted as a revolutionary material, and doping with strontium (Sr) ions in the Bg network exhibits improved biofunctionality towards bone tissue regeneration and inhibits osteoclast formation. Keeping this in view, the present study focused on the development of chitosan (CS)/gelatin (GE) porous scaffolds incorporated with Sr-doped Bg nanoparticles (nSrBg) for bone tissue engineering applications. The SEM analysis of the fabricated scaffold exhibited that it possessed a homogenous microstructure with an interconnected porous network having pore sizes of 100-300 μm. A swelling of <6-fold and a degradation rate under 50 % were achieved. The compression test revealed that nSrBg improved the strength of the composite to 1.15 MPa. In vitro bioactivity assays suggested the presence of nSrBg enhanced the bone-like deposition of the apatite layer, which possessed cell-supportive properties, allowing the cells to attach and proliferate over the scaffold surface. MTT assay and live-dead staining revealed that the nSrBg enhanced the proliferation of the cells up to 0.48 OD. The ALP assay suggested that the nSrBg addition improved the osteogenic potential until 0.70 OD. Overall, the fabricated scaffold showed superior mechanical and biological properties that can be a promising platform for bone tissue regeneration.
Collapse
Affiliation(s)
- Kiran Sebastian K
- Center of Excellence in Tissue Engineering, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Amit Kumar Singh
- Center of Excellence in Tissue Engineering, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India; Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra 411018, India
| | - Amit Biswas
- Center of Excellence in Tissue Engineering, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
2
|
Ungureanu E, Vladescu (Dragomir) A, Parau AC, Mitran V, Cimpean A, Tarcolea M, Vranceanu DM, Cotrut CM. In Vitro Evaluation of Ag- and Sr-Doped Hydroxyapatite Coatings for Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5428. [PMID: 37570133 PMCID: PMC10419960 DOI: 10.3390/ma16155428] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Osseointegration plays the most important role in the success of an implant. One of the applications of hydroxyapatite (HAp) is as a coating for metallic implants due to its bioactive nature, which improves osteoconduction. The purpose of this research was to assess the in vitro behavior of HAp undoped and doped with Ag and/or Sr obtained by galvanostatic pulsed electrochemical deposition. The coatings were investigated in terms of chemical bonds, contact angle and surface free energy, electrochemical behavior, in vitro biomineralization in acellular media (SBF and PBS), and biocompatibility with preosteoblasts cells (MC3T3-E1 cell line). The obtained results highlighted the beneficial impact of Ag and/or Sr on the HAp. The FTIR spectra confirmed the presence of hydroxyapatite within all coatings, while in terms of wettability, the contact angle and surface free energy investigations showed that all surfaces were hydrophilic. The in vitro behavior of MC3T3-E1 indicated that the presence of Sr in the HAp coatings as a unique doping agent or in combination with Ag elicited improved cytocompatibility in terms of cell proliferation and osteogenic differentiation. Therefore, the composite HAp-based coatings showed promising potential for bone regeneration applications.
Collapse
Affiliation(s)
- Elena Ungureanu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (E.U.); (M.T.)
| | - Alina Vladescu (Dragomir)
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 409 Atomistilor Street, 77125 Magurele, Romania (A.C.P.)
| | - Anca C. Parau
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 409 Atomistilor Street, 77125 Magurele, Romania (A.C.P.)
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Independentei Street, 050095 Bucharest, Romania; (V.M.); (A.C.)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Independentei Street, 050095 Bucharest, Romania; (V.M.); (A.C.)
| | - Mihai Tarcolea
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (E.U.); (M.T.)
| | - Diana M. Vranceanu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (E.U.); (M.T.)
| | - Cosmin M. Cotrut
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (E.U.); (M.T.)
| |
Collapse
|
3
|
Predoi D, Ciobanu CS, Iconaru SL, Raaen S, Rokosz K. Biocomposite Coatings Doped with Magnesium and Zinc Ions in Chitosan Matrix for Antimicrobial Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4412. [PMID: 37374594 DOI: 10.3390/ma16124412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Hydroxyapatite doped with magnesium and zinc in chitosan matrix biocomposites have great potential for applications in space technology, aerospace, as well as in the biomedical field, as a result of coatings with multifunctional properties that meet the increased requirements for wide applications. In this study, coatings on titanium substrates were developed using hydroxyapatite doped with magnesium and zinc ions in a chitosan matrix (MgZnHAp_Ch). Valuable information concerning the surface morphology and chemical composition of MgZnHAp_Ch composite layers were obtained from studies that performed scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), metallographic microscopy, and atomic force microscopy (AFM). The wettability of the novel coatings, based on magnesium and zinc-doped biocomposites in a chitosan matrix on a titanium substrate, was evaluated by performing water contact angle studies. Furthermore, the swelling properties, together with the coating's adherence to the titanium substrate, were also analyzed. The AFM results emphasized that the composite layers exhibited the surface topography of a uniform layer, and that there were no evident cracks and fissures present on the investigated surface. Moreover, antifungal studies concerning the MgZnHAp_Ch coatings were also carried out. The data obtained from quantitative antifungal assays highlight the strong inhibitory effects of MgZnHAp_Ch against C. albicans. Additionally, our results underline that after 72 h of exposure, the MgZnHAp_Ch coatings display fungicidal features. Thus, the obtained results suggest that the MgZnHAp_Ch coatings possess the requisite properties that make them suitable for use in the development of new coatings with enhanced antifungal features.
Collapse
Affiliation(s)
- Daniela Predoi
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania
| | - Carmen Steluta Ciobanu
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania
| | - Steinar Raaen
- Department of Physics, Norwegian University of Science and Technology (NTNU), Realfagbygget E3-124 Høgskoleringen 5, NO 7491 Trondheim, Norway
| | - Krzysztof Rokosz
- Faculty of Electronics and Computer Science, Koszalin University of Technology, Śniadeckich 2, PL 75-453 Koszalin, Poland
| |
Collapse
|
4
|
Fosca M, Streza A, Antoniac IV, Vadalà G, Rau JV. Ion-Doped Calcium Phosphate-Based Coatings with Antibacterial Properties. J Funct Biomater 2023; 14:jfb14050250. [PMID: 37233360 DOI: 10.3390/jfb14050250] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Ion-substituted calcium phosphate (CP) coatings have been extensively studied as promising materials for biomedical implants due to their ability to enhance biocompatibility, osteoconductivity, and bone formation. This systematic review aims to provide a comprehensive analysis of the current state of the art in ion-doped CP-based coatings for orthopaedic and dental implant applications. Specifically, this review evaluates the effects of ion addition on the physicochemical, mechanical, and biological properties of CP coatings. The review also identifies the contribution and additional effects (in a separate or a synergistic way) of different components used together with ion-doped CP for advanced composite coatings. In the final part, the effects of antibacterial coatings on specific bacteria strains are reported. The present review could be of interest to researchers, clinicians, and industry professionals involved in the development and application of CP coatings for orthopaedic and dental implants.
Collapse
Affiliation(s)
- Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Alexandru Streza
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
| | - Iulian V Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Gianluca Vadalà
- Laboratory of Regenerative Orthopaedics, Research Unit of Orthopaedic, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Operative Research Unit of Orthopaedics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
5
|
Murugesan V, Vaiyapuri M, Murugeasan A. Fabrication and characterization of strontium substituted chitosan modify hydroxyapatite for biomedical applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
Antibacterial and Cytocompatible: Combining Silver Nitrate with Strontium Acetate Increases the Therapeutic Window. Int J Mol Sci 2022; 23:ijms23158058. [PMID: 35897634 PMCID: PMC9331456 DOI: 10.3390/ijms23158058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Microbial infection and insufficient tissue formation are considered to be the two main causes of dental implant failure. Novel studies have focused on designing dual-functional strategies to promote antibacterial properties and improve tissue cell response simultaneously. In this study, we investigated the antibacterial properties and cytocompatibility of silver nitrate (AgNO3) and strontium acetate (SrAc) in a mono-culture setup for dental application. Additionally, we defined the therapeutic window between the minimum inhibitory concentration against pathogenic bacteria and maximum cytocompatible dose in the case of combined applications in a co-culture setup. Antibacterial properties were screened using Aggregatibacter actinomycetemcomitans and cell response experiments were performed with osteoblastic cells (MC3T3) and fibroblastic cells (NIH3T3). The osteoinductive behavior was investigated separately on MC3T3 cells using alizarin red staining. A therapeutic window for AgNO3 as well as SrAc applications could be defined in the case of MC3T3 cells while the cytocompatibility of NIH3T3 cells was compromised for all concentrations with an antibacterial effect. However, the combined application of AgNO3/SrAc caused an enhanced antibacterial effect and opened a therapeutic window for both cell lines. Enhanced mineralization rates could be observed in cultures containing SrAc. In conclusion, we were able to demonstrate that adding SrAc to AgNO3 not only intensifies antibacterial properties but also exhibits bone inductive characteristics, thereby offering a promising strategy to combat peri-implantitis and at the same time improve osseointegration in implant therapy.
Collapse
|
7
|
Batool SA, Ahmad K, Irfan M, Ur Rehman MA. Zn-Mn-Doped Mesoporous Bioactive Glass Nanoparticle-Loaded Zein Coatings for Bioactive and Antibacterial Orthopedic Implants. J Funct Biomater 2022; 13:jfb13030097. [PMID: 35893465 PMCID: PMC9326724 DOI: 10.3390/jfb13030097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/16/2022] Open
Abstract
In recent years, natural polymers have replaced synthetic polymers for antibacterial orthopedic applications owing to their excellent biocompatibility and biodegradability. Zein is a biopolymer found in corn. The lacking mechanical stability of zein is overcome by incorporating bioceramics, e.g., mesoporous bioactive glass nanoparticles (MBGNs). In the present study, pure zein and zein/Zn–Mn MBGN composite coatings were deposited via electrophoretic deposition (EPD) on 316L stainless steel (SS). Zn and Mn were co-doped in MBGNs in order to make use of their antibacterial and osteogenic potential, respectively. A Taguchi design of experiment (DoE) study was established to evaluate the effect of various working parameters on the morphology of the coatings. It was observed that coatings deposited at 20 V for 5 min with 4 g/L concentration (conc.) of Zn–Mn MBGNs showed the highest deposition yield. Uniform coatings with highly dispersed MBGNs were obtained adopting these optimized parameters. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were employed to investigate the morphology and elemental composition of zein/Zn–Mn MBGN composite coatings. Surface properties, i.e., coating roughness and wettability analysis, concluded that composite coatings were appropriate for cell attachment and proliferation. For adhesion strength, various techniques, including a tape test, bend test, pencil hardness test, and tensile test, were performed. Wear and corrosion analysis highlighted the mechanical and chemical stability of the coatings. The colony forming unit (CFU) test showed that the zein/Zn–Mn MBGN composite coating was highly effective against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) due to the presence of Zn. The formation of a hydroxyapatite (HA)-like structure upon immersion in the simulated body fluid (SBF) validated the in vitro bioactivity of the coating. Moreover, a WST-8 assay depicted that the MG-63 cells proliferate on the composite coating. It was concluded that the zein/Zn–Mn MBGN coating synthesized in this work can be used for bioactive and antibacterial orthopedic applications.
Collapse
Affiliation(s)
- Syeda Ammara Batool
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan; (S.A.B.); (K.A.)
| | - Khalil Ahmad
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan; (S.A.B.); (K.A.)
| | - Muhammad Irfan
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) H-12, Islamabad 44000, Pakistan;
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan; (S.A.B.); (K.A.)
- Correspondence:
| |
Collapse
|
8
|
A Review on the Recent Advancements on Therapeutic Effects of Ions in the Physiological Environments. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4020026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review focuses on the therapeutic effects of ions when released in physiological environments. Recent studies have shown that metallic ions like Ag+, Sr2+, Mg2+, Mn2+, Cu2+, Ca2+, P+5, etc., have shown promising results in drug delivery systems and regenerative medicine. These metallic ions can be loaded in nanoparticles, mesoporous bioactive glass nanoparticles (MBGNs), hydroxyapatite (HA), calcium phosphates, polymeric coatings, and salt solutions. The metallic ions can exhibit different functions in the physiological environment such as antibacterial, antiviral, anticancer, bioactive, biocompatible, and angiogenic effects. Furthermore, the metals/metalloid ions can be loaded into scaffolds to improve osteoblast proliferation, differentiation, bone development, fibroblast growth, and improved wound healing efficacy. Moreover, different ions possess different therapeutic limits. Therefore, further mechanisms need to be developed for the highly controlled and sustained release of these ions. This review paper summarizes the recent progress in the use of metallic/metalloid ions in regenerative medicine and encourages further study of ions as a solution to cure diseases.
Collapse
|
9
|
Green Synthesis of Antibacterial Nanocomposite of Silver Nanoparticle-Doped Hydroxyapatite Utilizing Curcuma longa Leaf Extract and Land Snail ( Achatina fulica) Shell Waste. J Funct Biomater 2022; 13:jfb13020084. [PMID: 35735939 PMCID: PMC9224568 DOI: 10.3390/jfb13020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 01/12/2023] Open
Abstract
Preparation of green synthesized silver nanoparticle (AgNPs)-doped hydroxyapatite (Ag/HA) utilizing Curcuma longa leaf extract and land snail (Achatina fulica) shell waste was performed. Physicochemical characteristics and antibacterial activity of Ag/HA composite as a function of Ag content was studied. Instrumental analysis such as XRD, SEM-EDX, TEM, and XPS were employed to characterize the nanocomposites. The physicochemical study revealed the maintained porous structure of HA after Ag immobilization, and from TEM analyses, it was found that the distributed spherical particles are associated with the dispersed Ag and have a particle diameter of around 5-25 nm. Antibacterial activity of the nanocomposite was evaluated against Escherichia coli, Staphylococcus aureus, Kliebsiella, pneumonia, and Streptococcus pyogenes. The results showed that the varied Ag content (1.0; 1.6; and 2.4% wt) influenced the nanoparticle distribution in the nanocomposite and enhanced the antibacterial feature.
Collapse
|
10
|
Synthesis of Novel Magnesium-Doped Hydroxyapatite/Chitosan Nanomaterial and Mechanisms for Enhanced Stabilization of Heavy Metals in Soil. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02391-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Hadzhieva Z, Boccaccini AR. Recent developments in electrophoretic deposition (EPD) of antibacterial coatings for biomedical applications- A review. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
A Brief Insight to the Electrophoretic Deposition of PEEK-, Chitosan-, Gelatin-, and Zein-Based Composite Coatings for Biomedical Applications: Recent Developments and Challenges. SURFACES 2021. [DOI: 10.3390/surfaces4030018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electrophoretic deposition (EPD) is a powerful technique to assemble metals, polymer, ceramics, and composite materials into 2D, 3D, and intricately shaped implants. Polymers, proteins, and peptides can be deposited via EPD at room temperature without affecting their chemical structures. Furthermore, EPD is being used to deposit multifunctional coatings (i.e., bioactive, antibacterial, and biocompatible coatings). Recently, EPD was used to architect multi-structured coatings to improve mechanical and biological properties along with the controlled release of drugs/metallic ions. The key characteristics of EPD coatings in terms of inorganic bioactivity and their angiogenic potential coupled with antibacterial properties are the key elements enabling advanced applications of EPD in orthopedic applications. In the emerging field of EPD coatings for hard tissue and soft tissue engineering, an overview of such applications will be presented. The progress in the development of EPD-based polymeric or composite coatings, including their application in orthopedic and targeted drug delivery approaches, will be discussed, with a focus on the effect of different biologically active ions/drugs released from EPD deposits. The literature under discussion involves EPD coatings consisting of chitosan (Chi), zein, polyetheretherketone (PEEK), and their composites. Moreover, in vitro and in vivo investigations of EPD coatings will be discussed in relation to the current main challenge of orthopedic implants, namely that the biomaterial must provide good bone-binding ability and mechanical compatibility.
Collapse
|
13
|
Kreller T, Sahm F, Bader R, Boccaccini AR, Jonitz-Heincke A, Detsch R. Biomimetic Calcium Phosphate Coatings for Bioactivation of Titanium Implant Surfaces: Methodological Approach and In Vitro Evaluation of Biocompatibility. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3516. [PMID: 34202595 PMCID: PMC8269522 DOI: 10.3390/ma14133516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
Ti6Al4V as a common implant material features good mechanical properties and corrosion resistance. However, untreated, it lacks bioactivity. In contrast, coatings with calcium phosphates (CaP) were shown to improve cell-material interactions in bone tissue engineering. Therefore, this work aimed to investigate how to tailor biomimetic CaP coatings on Ti6Al4V substrates using modified biomimetic calcium phosphate (BCP) coating solutions. Furthermore, the impact of substrate immersion in a 1 M alkaline CaCl2 solution (pH = 10) on subsequent CaP coating formation was examined. CaP coatings were characterized via scanning electron microscopy, x-ray diffraction, energy-dispersive x-ray spectroscopy, and laser-scanning microscope. Biocompatibility of coatings was carried out with primary human osteoblasts analyzing cell morphology, proliferation, collagen type 1, and interleukin 6 and 8 release. Results indicate a successful formation of low crystalline hydroxyapatite (HA) on top of every sample after immersion in each BCP coating solution after 14 days. Furthermore, HA coating promoted cell proliferation and reduced the concentration of interleukins compared to the uncoated surface, assuming increased biocompatibility.
Collapse
Affiliation(s)
- Thomas Kreller
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; (T.K.); (A.R.B.)
| | - Franziska Sahm
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, 18057 Rostock, Germany; (F.S.); (R.B.); (A.J.-H.)
| | - Rainer Bader
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, 18057 Rostock, Germany; (F.S.); (R.B.); (A.J.-H.)
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; (T.K.); (A.R.B.)
| | - Anika Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, 18057 Rostock, Germany; (F.S.); (R.B.); (A.J.-H.)
| | - Rainer Detsch
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; (T.K.); (A.R.B.)
| |
Collapse
|
14
|
Kharitonov DS, Kasach AA, Gibala A, Zimowska M, Kurilo II, Wrzesińska A, Szyk-Warszyńska L, Warszyński P. Anodic Electrodeposition of Chitosan-AgNP Composites Using In Situ Coordination with Copper Ions. MATERIALS 2021; 14:ma14112754. [PMID: 34071001 PMCID: PMC8197130 DOI: 10.3390/ma14112754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Chitosan is an attractive material for biomedical applications. A novel approach for the anodic electrodeposition of chitosan–AgNP composites using in situ coordination with copper ions is proposed in this work. The surface and cross-section morphology of the obtained coating with varying concentrations of AgNPs were evaluated by SEM, and surface functional groups were analyzed with FT-IR spectroscopy. The mechanism of the formation of the coating based on the chelation of Cu(II) ions with chitosan was discussed. The antibacterial activity of the coatings towards Staphylococcus epidermidis ATCC 35984/RP62A bacteria was analyzed using the live–dead approach. The presented results indicate that the obtained chitosan–AgNP-based films possess some limited anti-biofilm-forming properties and exhibit moderate antibacterial efficiency at high AgNP loads.
Collapse
Affiliation(s)
- Dmitry S. Kharitonov
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (A.G.); (M.Z.); (L.S.-W.); (P.W.)
- Correspondence: (D.S.K.); (A.A.K.)
| | - Aliaksandr A. Kasach
- Department of Chemistry, Electrochemical Production Technology and Materials for Electronic Equipment, Chemical Technology and Engineering Faculty, Belarusian State Technological University, Sverdlova 13a, 220006 Minsk, Belarus
- Correspondence: (D.S.K.); (A.A.K.)
| | - Agnieszka Gibala
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (A.G.); (M.Z.); (L.S.-W.); (P.W.)
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Małgorzata Zimowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (A.G.); (M.Z.); (L.S.-W.); (P.W.)
| | - Irina I. Kurilo
- Department of Physical, Colloid and Analytical Chemistry, Organic Substances Technology Faculty, Belarusian State Technological University, Sverdlova 13a, 220006 Minsk, Belarus;
| | - Angelika Wrzesińska
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Lilianna Szyk-Warszyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (A.G.); (M.Z.); (L.S.-W.); (P.W.)
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (A.G.); (M.Z.); (L.S.-W.); (P.W.)
| |
Collapse
|
15
|
Nawaz A, Ur Rehman MA. Chitosan/gelatin‐based bioactive and antibacterial coatings deposited via electrophoretic deposition. J Appl Polym Sci 2021. [DOI: 10.1002/app.50220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Aneeqa Nawaz
- Department of Materials Science and Engineering Institute of Space Technology Islamabad Islamabad Pakistan
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science and Engineering Institute of Space Technology Islamabad Islamabad Pakistan
| |
Collapse
|
16
|
Bano S, Akhtar M, Yasir M, Salman Maqbool M, Niaz A, Wadood A, Ur Rehman MA. Synthesis and Characterization of Silver-Strontium (Ag-Sr)-Doped Mesoporous Bioactive Glass Nanoparticles. Gels 2021; 7:34. [PMID: 33805013 PMCID: PMC8103248 DOI: 10.3390/gels7020034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Biomedical implants are the need of this era due to the increase in number of accidents and follow-up surgeries. Different types of bone diseases such as osteoarthritis, osteomalacia, bone cancer, etc., are increasing globally. Mesoporous bioactive glass nanoparticles (MBGNs) are used in biomedical devices due to their osteointegration and bioactive properties. In this study, silver (Ag)- and strontium (Sr)-doped mesoporous bioactive glass nanoparticles (Ag-Sr MBGNs) were prepared by a modified Stöber process. In this method, Ag+ and Sr2+ were co-substituted in pure MBGNs to harvest the antibacterial properties of Ag ions, as well as pro-osteogenic potential of Sr2 ions. The effect of the two-ion concentration on morphology, surface charge, composition, antibacterial ability, and in-vitro bioactivity was studied. Scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) confirmed the doping of Sr and Ag in MBGNs. SEM and EDX analysis confirmed the spherical morphology and typical composition of MBGNs, respectively. The Ag-Sr MBGNs showed a strong antibacterial effect against Staphylococcus carnosus and Escherichia coli bacteria determined via turbidity and disc diffusion method. Moreover, the synthesized Ag-Sr MBGNs develop apatite-like crystals upon immersion in simulated body fluid (SBF), which suggested that the addition of Sr improved in vitro bioactivity. The Ag-Sr MBGNs synthesized in this study can be used for the preparation of scaffolds or as a filler material in the composite coatings for bone tissue engineering.
Collapse
Affiliation(s)
- Shaher Bano
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan; (S.B.); (M.A.); (M.Y.); (A.W.)
| | - Memoona Akhtar
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan; (S.B.); (M.A.); (M.Y.); (A.W.)
| | - Muhammad Yasir
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan; (S.B.); (M.A.); (M.Y.); (A.W.)
| | - Muhammad Salman Maqbool
- Department of Mechanical and Manufacturing Engineering, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Akbar Niaz
- Department of Mechanical Engineering, King Faisal University, Al Hufūf 31982, Saudi Arabia;
| | - Abdul Wadood
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan; (S.B.); (M.A.); (M.Y.); (A.W.)
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan; (S.B.); (M.A.); (M.Y.); (A.W.)
| |
Collapse
|