1
|
Chappell WP, Favié M, Sammis GM. Thionyl fluoride as a sulfur(IV) SuFEx hub for the efficient syntheses of sulfinamides and sulfinate esters. Chem Commun (Camb) 2024; 60:9765-9768. [PMID: 39157931 DOI: 10.1039/d4cc02876g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Herein, we demonstrate a method for the syntheses of sulfinamides and sulfinate esters using a novel sulfur(IV) fluoride exchange reaction with organometallic reagents. Our strategy involves the addition of an amine or alcohol nucleophile to thionyl fluoride, acting as a S(IV) SuFEx hub, followed by an organometallic reagent. This approach allows efficient access to sulfinamides (45-91% yields) and sulfinate esters (44-82% yields) in only 30 minutes. The sulfinamide and sulfinate esters also can be readily derivatized to the corresponding S(VI) sulfonamides, sulfonate esters, sulfonimidamides, and sulfonimidates without isolation of the intermediates.
Collapse
Affiliation(s)
- William P Chappell
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| | - Marie Favié
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
2
|
Li H, Zhang Y, Yang X, Deng Z, Zhu Z, Zhou P, Ouyang X, Yuan Y, Chen X, Yang L, Liu M, Shu C. Synthesis of Multifluoromethylated γ-Sultines by a Photoinduced Radical Addition-Polar Cyclization. Angew Chem Int Ed Engl 2023; 62:e202300159. [PMID: 36762878 DOI: 10.1002/anie.202300159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/11/2023]
Abstract
Despite the significance of sultines in synthesis, medicine, and materials science, the chemistry of sultines has remained unexplored due to their inaccessibility. Herein, we demonstrate the development of a photoredox-catalyzed multifluoromethyl radical addition/SO2 incorporation/polar cyclization cascade approach to multifluoromethylated γ-sultines. The reactions proceed by single electron transfer induced multifluoromethyl radical addition to an alkene followed by SO2 incorporation, and single-electron reduction for polar 5-exo-tet cyclization. Key to the success of the protocol is the use of easily oxidizable multifluoroalkanesulfinates as bifunctional reagents. The reactions proceed with excellent functional-group tolerance to deliver γ-sultines in moderate to excellent yields.
Collapse
Affiliation(s)
- Helian Li
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Yongxin Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Xiaoxiao Yang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Zhenxi Deng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Zhimin Zhu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Pan Zhou
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Xinke Ouyang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Yuting Yuan
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Xi Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Lingyue Yang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Meng Liu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Chao Shu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| |
Collapse
|
3
|
Chang Y, Fu J, Li Y, Ding R, Liu Y, Hu J. Pd-Catalyzed Rearrangement Reaction of N-Tosylhydrazones Bearing Allyl Ethers Into Trans-Olefin-Substituted Sulfonylhydrazones. Front Chem 2021; 9:782641. [PMID: 34760873 PMCID: PMC8573317 DOI: 10.3389/fchem.2021.782641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
A novel and efficient rearrangement of N-tosylhydrazones bearing allyl ethers into trans-olefin-substituted sulfonylhydrazones is proposed. The reaction involves breakage of the C-O bond and formation of the C-N bond. The reaction can be extended to a wide range of substrates, and the target products can be synthesized smoothly, regardless of the presence of electron-donating and electron-withdrawing groups. The proposed strategy is a new direction in the field of rearrangement reactions.
Collapse
Affiliation(s)
| | | | - Yingxue Li
- Weifang Medical University, Weifang, China
| | | | - Yue Liu
- Weifang Medical University, Weifang, China
| | - Jinxing Hu
- Weifang Medical University, Weifang, China
| |
Collapse
|