1
|
Tavakoli N, Arvinnezhad H, Majidian S, Mahramasrar M, Jadidi K, Samadi S. Chiral amido-oxazoline functionalized MCM-41: A sustainable heterogeneous catalyst for enantioselective Kharasch-Sosnovsky and Henry reactions. Heliyon 2024; 10:e39911. [PMID: 39553607 PMCID: PMC11565425 DOI: 10.1016/j.heliyon.2024.e39911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/21/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
In this study, a series of chiral amido-oxazoline ligands was synthesized with a primary focus on immobilizing the most effective ligands on MCM-41 mesoporous material. Following several attempts, the para-nitro group of the chiral amido-oxazoline ligands was successfully reduced to amino group, enabling their immobilization on MCM-41. The resulting chiral heterogeneous amido-oxazoline ligands were characterized using various techniques, including FT-IR, XRD, TGA, SEM, TEM, EDX, and BET-BJH, confirming the successful immobilization of the amido-oxazoline ligands. A comparison of the efficiency of the homogeneous and heterogeneous amido-oxazoline-based ligands in the Kharasch-Sosnovsky and Henry reactions revealed better performance of the heterogeneous ligand. The immobilized amido-oxazoline-copper complexes exhibited remarkable catalytic activity, achieving excellent yields and enantioselectivities (up to 88 % ee) in the Kharasch-Sosnovsky reaction, and delivering excellent yields with moderate enantioselectivities in the Henry reaction. Notably, the Henry reaction proceeded with moderate diastereoselectivity, favoring the syn diastereomer, under solvent-free conditions, highlighting the sustainability of the process. The heterogeneous nature of the catalysts facilitated effortless recovery and efficient reusability.
Collapse
Affiliation(s)
- Niloofar Tavakoli
- Department of Chemistry, Shahid Beheshti University, G.C., Tehran, 1983963113, Iran
| | - Hamid Arvinnezhad
- Laboratory of Asymmetric Synthesis, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Shiva Majidian
- Laboratory of Asymmetric Synthesis, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Mahsa Mahramasrar
- Laboratory of Asymmetric Synthesis, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Khosrow Jadidi
- Department of Chemistry, Shahid Beheshti University, G.C., Tehran, 1983963113, Iran
| | - Saadi Samadi
- Laboratory of Asymmetric Synthesis, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, 66177-15175, Iran
| |
Collapse
|
2
|
Zhu N, Yao H, Zhang X, Bao H. Metal-catalyzed asymmetric reactions enabled by organic peroxides. Chem Soc Rev 2024; 53:2326-2349. [PMID: 38259195 DOI: 10.1039/d3cs00735a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
As a class of multifunctional reagents, organic peroxides play vital roles in the chemical industry, pharmaceutical synthesis and polymerization reactions. Metal-catalyzed asymmetric catalysis has emerged as one of the most straightforward and efficient strategies to construct enantioenriched molecules, and an increasing number of metal-catalyzed asymmetric reactions enabled by organic peroxides have been disclosed by researchers in recent years. Despite remarkable progress, the types of asymmetric reactions facilitated by organic peroxides remain limited and the catalysis systems need to be further broadened. To the best of our knowledge, there is still no review devoted to summarizing the reactions from this perspective. In this review, we will endeavor to highlight the advances in metal-catalyzed asymmetric reactions enabled by organic peroxides. We hope that this survey will summarize the functions of organic peroxides in catalytic reactions, improve the understanding of these compounds and inspire future developments in this area.
Collapse
Affiliation(s)
- Nengbo Zhu
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.
| | - Huijie Yao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.
- Fujian College, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Xiyu Zhang
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.
- Fujian College, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
3
|
Rezaei A, Zheng H, Majidian S, Samadi S, Ramazani A. Chiral Pseudohomogeneous Catalyst Based on Amphiphilic Carbon Quantum Dots for the Enantioselective Kharasch-Sosnovsky Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54373-54385. [PMID: 37963325 DOI: 10.1021/acsami.3c10756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The term "chiral pseudohomogeneous catalyst (PHC)" denotes a novel concept that characterizes subnanometric particles exhibiting atomic-level chirality. The PHC based on chiral amphiphilic carbon quantum dots possesses distinctive features that combine the strengths of both homogeneous and heterogeneous catalysts, thereby heralding a significant breakthrough in the fields of asymmetric synthesis and medicinal chemistry. To the best of our knowledge, this is the first and the only reported research of a chiral PHC that demonstrates exceptional performance in controlling the enantioselectivity of the Kharasch-Sosnovsky reaction, yielding the corresponding products in high conversion (95%) with a moderate enantiomeric excess (75%). Notably, the chiral information on l-tryptophan can be effectively transferred from the outer shell of the nanosized catalyst, thereby inducing enantioselectivity in C-H activation and subsequent C-O forming events. Additionally, we have investigated the impact of various factors on the allylic oxidation reaction, including the amount, diversity, and hydrophilic/hydrophobic nature of the catalyst, as well as the influence of the solvent, Cu salts, temperature, and the type of alkene and perester, in order to comprehensively explore the reaction conditions. Furthermore, the catalyst can be readily recycled from the reaction medium, making this PHC a promising innovation that can significantly impact practical applications. In summary, this breakthrough can be aptly described as a "Golden Gate" due to its unparalleled potential to open up novel avenues for research and innovation.
Collapse
Affiliation(s)
- Aram Rezaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Huajun Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shiva Majidian
- Laboratory of Asymmetric Synthesis, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Saadi Samadi
- Laboratory of Asymmetric Synthesis, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Ali Ramazani
- Department of Chemistry, University of Zanjan, Zanjan 45371-38791, Iran
| |
Collapse
|
4
|
Sehhat Z, Mansoori S, Arvinnezhad H, Naghdi Y, Samadi S. Application of chiral Betti base-copper complexes in enantioselective allylic oxidation of olefins, computational studies of the Betti bases, and docking of the resulting chiral allylic esters. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
5
|
Preparation and DFT studies of chiral Cu (I)-complexes of biphenyl bisoxazolines and their application in enantioselective Kharasch-Sosnovsky reaction. Sci Rep 2022; 12:15038. [PMID: 36057728 PMCID: PMC9440904 DOI: 10.1038/s41598-022-18922-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Effect of a range of t-butyl perbenzoates bearing electron-withdrawing and electron-donating substitutions on the phenyl ring and HZSM-5 as a porous additive at 0 °C in enantioselective allylic C-H bond oxidation of cyclic and acyclic olefins in the presence of Cu (I)-(S,aS,S) complexes of biphenyl bisoxazoline ligands, produced easily through the chelation-induced process, were investigated. The enantioenriched allylic esters were obtained in reasonable times with excellent enantioselectivities and yields using electron-withdrawing substituted peresters in the presence of Cu (I)-(S,aS,S)-1a complex, containing phenyl groups at the stereogenic centers of the oxazoline moieties. To reach a better insight on geometry, chemical activity, enantioselectivity, and thermodynamic stability of the Cu (I)-BOX complexes, DFT calculations with B3LYP-D3/6-31G (d, p) level of theory were applied to them. Moreover, NBO analysis was used to illustrate interactions between orbitals.
Collapse
|
6
|
Enantioselective Allylic C-H Bond Oxidation of Olefins Using Copper Complexes of Chiral Oxazoline Based Ligands. Top Curr Chem (Cham) 2022; 380:20. [PMID: 35274165 DOI: 10.1007/s41061-022-00375-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/10/2022] [Indexed: 10/18/2022]
Abstract
This review article discusses historical and contemporary research studies of asymmetric allylic oxidation of olefins using homogeneous and heterogeneous copper complexes of various kinds of oxazoline-based ligands, until the end of 2021. It is revealed that this strategy is a powerful method to form a new stereogenic center bearing an oxygen substituent adjacent to an unchanged C=C bond. Enantioselectivities as well as chemical yields, and also the reactivity, are strongly dependent on the type of substrate, oxidant, the copper salt and its oxidation state, ligand structure, temperature, nature of the solvent, and additives such as phenylhydrazine and porous materials.
Collapse
|
7
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
8
|
Ziarani GM, Roshankar S, Mohajer F, Badiei A. The Synthesis and Application of Functionalized Mesoporous Silica SBA-15 as Heterogeneous Catalyst in Organic Synthesis. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201210194444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mesoporous silica nanomaterials provide an extraordinary advantage for making
new and superior heterogeneous catalysts because of their surface silanol groups. The functionalized
mesoporous SBA-15, such as acidic, basic, BrÖnsted, lewis acid, and chiral catalysts,
are used for a wide range of organic syntheses. The importance of the chiral ligands,
which were immobilized on the SBA-15, was mentioned in this review to achieve chiral
products as valuable target molecules. Herein, their synthesis and application in different organic
transformations are reviewed from 2016 till date 2020.
Collapse
Affiliation(s)
| | - Shima Roshankar
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Samadi S, Ashouri A, Rashid HI, Majidian S, Mahramasrar M. Immobilization of ( l)-valine and ( l)-valinol on SBA-15 nanoporous silica and their application as chiral heterogeneous ligands in the Cu-catalyzed asymmetric allylic oxidation of alkenes. NEW J CHEM 2021. [DOI: 10.1039/d1nj02580e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chiral heterogeneous ligands AL*-i-Pr-SBA-15 and AA*-i-Pr-SBA-15 were synthesized and then used in Cu-catalyzed asymmetric allylic oxidation of alkenes. Allylic esters with moderate enantiomeric excess and good yields were obtained.
Collapse
Affiliation(s)
- Saadi Samadi
- Laboratory of Asymmetric Synthesis, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Akram Ashouri
- Laboratory of Asymmetric Synthesis, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Hersh I Rashid
- Laboratory of Asymmetric Synthesis, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Shiva Majidian
- Laboratory of Asymmetric Synthesis, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Mahsa Mahramasrar
- Laboratory of Asymmetric Synthesis, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| |
Collapse
|
10
|
Gök Y, Gök HZ. Synthesis, characterization and catalytic performance in enantioselective reactions by mesoporous silica materials functionalized with chiral thiourea-amine ligand. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04301-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|