1
|
Kaliyaperumal A, Valalahally Gopala A, Pandurangappa G, Nanda BRK, Chetty R, Chandiran AK. Photochemical CO 2 Reduction Using a Lead-Free Cs 2AgMCl 6 (M= Bi, In, and Sb) Double Perovskite toward Selective Formic Acid Production. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39992026 DOI: 10.1021/acsami.4c20216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Perovskite materials have been identified as promising photocatalysts for CO2 reduction due to their unique physicochemical and optical characteristics. This study employs lead-free halide double perovskites based on Cs2AgMCl6 (M-Bi, In, and Sb or their mixed composition) as photocatalysts for carbon dioxide reduction. It was found that double perovskite materials are highly selective toward formic acid production, with more than 80% selectivity. The Cs2AgInCl6 material shows the best performance, with a formic acid conversion of 85.5 μmol g-1 h-1. These materials show excellent structural stability over 24 h under photocatalytic conditions. Furthermore, the selectivity of the product was investigated using density functional theory calculations, and the results show a low free-energy barrier toward the formation of formic acid as compared to other reduction products, including carbon monoxide and methane. The Ag site of the [110] terminated surface is identified to be a favorable site for catalytic reduction.
Collapse
Affiliation(s)
- Alamelu Kaliyaperumal
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu 600036, India
- Center for Atomistic Modelling and Materials Design, Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu 600036, India
| | - Abhijitha Valalahally Gopala
- Condensed Matter Theory and Computational Laboratory, Department of Physics, Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu 600036, India
| | - Govardhan Pandurangappa
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu 600036, India
| | - Birabar Ranjit Kumar Nanda
- Condensed Matter Theory and Computational Laboratory, Department of Physics, Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu 600036, India
- Center for Atomistic Modelling and Materials Design, Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu 600036, India
| | - Raghuram Chetty
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu 600036, India
| | - Aravind Kumar Chandiran
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
2
|
Ghosh T, Ren P, Franck P, Tang M, Jaworski A, Barcaro G, Monti S, Chouhan L, Rabeah J, Skorynina A, Silvestre-Albero J, Simonelli L, Rokicińska A, Debroye E, Kuśtrowski P, Bals S, Das S. A robust Fe-based heterogeneous photocatalyst for the visible-light-mediated selective reduction of an impure CO 2 stream. Chem Sci 2024; 15:11488-11499. [PMID: 39055026 PMCID: PMC11268485 DOI: 10.1039/d4sc02773f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024] Open
Abstract
The transformation of CO2 into value-added products from an impure CO2 stream, such as flue gas or exhaust gas, directly contributes to the principle of carbon capture and utilization (CCU). Thus, we have developed a robust iron-based heterogeneous photocatalyst that can convert the exhaust gas from the car into CO with an exceptional production rate of 145 μmol g-1 h-1. We characterized this photocatalyst by PXRD, XPS, ssNMR, EXAFS, XANES, HR-TEM, and further provided mechanistic experiments, and multi-scale/level computational studies. We have reached a clear understanding of its properties and performance that indicates that this highly robust photocatalyst could be used to design an efficient visible-light-mediated reduction strategy for the transformation of impure CO2 streams into value-added products.
Collapse
Affiliation(s)
- Topi Ghosh
- Department of Chemistry, University of Antwerp Antwerp Belgium
| | - Peng Ren
- Department of Chemistry, University of Antwerp Antwerp Belgium
- Department of Chemistry, University of Bayreuth Bayreuth Germany
| | - Philippe Franck
- Department of Chemistry, University of Antwerp Antwerp Belgium
| | - Min Tang
- EMAT and NANO Lab Center of Excellence, Department of Physics, University of Antwerp Antwerp Belgium
| | - Aleksander Jaworski
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm Sweden
| | - Giovanni Barcaro
- CNR-IPCF, Institute for Chemical and Physical Processes via G. Moruzzi 1 56124 Pisa Italy
| | - Susanna Monti
- CNR-ICCOM, Institute of Chemistry of Organometallic Compounds via G. Moruzzi 1 56124 Pisa Italy
| | - Lata Chouhan
- Department of Chemistry, KU Leuven Leuven Belgium
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e. V Albert-Einstein-Straße 29a 18059 Rostock Germany
| | | | - Joaquin Silvestre-Albero
- Departamento de Quimica Inorganica-Instituto Universitario de Materiales, Universidad de Alicante Alicante E-03080 Spain
| | | | | | - Elke Debroye
- Department of Chemistry, KU Leuven Leuven Belgium
| | | | - Sara Bals
- EMAT and NANO Lab Center of Excellence, Department of Physics, University of Antwerp Antwerp Belgium
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp Antwerp Belgium
- Department of Chemistry, University of Bayreuth Bayreuth Germany
| |
Collapse
|
3
|
Baghdadi Y, Daboczi M, Temerov F, Yang M, Cui J, Eslava S. A g-C 3N 4/rGO/Cs 3Bi 2Br 9 mediated Z-scheme heterojunction for enhanced photocatalytic CO 2 reduction. JOURNAL OF MATERIALS CHEMISTRY. A 2024; 12:16383-16395. [PMID: 38988703 PMCID: PMC11232668 DOI: 10.1039/d4ta01857e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/16/2024] [Indexed: 07/12/2024]
Abstract
Photocatalytic CO2 reduction plays a crucial role in advancing solar fuels, and enhancing the efficiency of the chosen photocatalysts is essential for sustainable energy production. This study demonstrates advancements in the performance of g-C3N4 as a photocatalyst achieved through surface modifications such as exfoliation to increase surface area and surface oxidation for improved charge separation. We also introduce reduced graphene oxide (rGO) in various ratios to both bulk and exfoliated g-C3N4, which effectively mitigates charge recombination and establishes an optimal ratio for enhanced efficiency. g-C3N4/rGO serves to fabricate a hybrid organic/inorganic heterojunction with Cs3Bi2Br9, resulting in a g-C3N4/rGO/Cs3Bi2Br9 composite. This leads to a remarkable increase in photocatalytic conversion of CO2 and H2O to CO, H2 and CH4 at rates of 54.3 (±2.0) μmole- g-1 h-1, surpassing that of pure Cs3Bi2Br9 (11.2 ± 0.4 μmole- g-1 h-1) and bulk g-C3N4 (5.5 ± 0.5 μmole- g-1 h-1). The experimentally determined energy diagram indicates that rGO acts as a solid redox mediator between g-C3N4 and Cs3Bi2Br9 in a Z-scheme heterojunction configuration, ensuring that the semiconductor (Cs3Bi2Br9) with the shallowest conduction band drives the reduction and the one with the deepest valence band (g-C3N4) drives the oxidation. The successful formation of this high-performance heterojunction underscores the potential of the developed composite as a photocatalyst for CO2 reduction, offering promising prospects for advancing the field of solar fuels and achieving sustainable energy goals.
Collapse
Affiliation(s)
- Yasmine Baghdadi
- Department of Chemical Engineering and Centre for Processable Electronics, Imperial College London London SW7 2AZ UK
| | - Matyas Daboczi
- Department of Chemical Engineering and Centre for Processable Electronics, Imperial College London London SW7 2AZ UK
| | - Filipp Temerov
- Department of Chemical Engineering and Centre for Processable Electronics, Imperial College London London SW7 2AZ UK
- Nano and Molecular System (NANOMO) Research Unit, University of Oulu Oulu 90570 Finland
| | - Mengya Yang
- Department of Chemical Engineering and Centre for Processable Electronics, Imperial College London London SW7 2AZ UK
| | - Junyi Cui
- Department of Chemical Engineering and Centre for Processable Electronics, Imperial College London London SW7 2AZ UK
| | - Salvador Eslava
- Department of Chemical Engineering and Centre for Processable Electronics, Imperial College London London SW7 2AZ UK
| |
Collapse
|
4
|
Zhao H, Sun J, Kumar S, Li P, Thalluri SM, Wang ZM, Thumu U. Recent advances in metal halide perovskite based photocatalysts for artificial photosynthesis and organic transformations. Chem Commun (Camb) 2024; 60:5890-5911. [PMID: 38775203 DOI: 10.1039/d4cc01949k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Metal halide perovskites (MHP) emerged as highly promising materials for photocatalysis, offering significant advancements in the degradation of soluble and airborne pollutants, as well as the transformation of functional organic compounds. This comprehensive review focuses on recent developments in MHP-based photocatalysts, specifically examining two major categories: lead-based (such as CsPbBr3) and lead-free variants (e.g. Cs2AgBiX6, Cs3Bi2Br9 and others). While the review briefly discusses the contributions of MHPs to hydrogen (H2) production and carbon dioxide (CO2) reduction, the main emphasis is on the design principles that determine the effectiveness of perovskites in facilitating organic reactions and degrading hazardous chemicals through oxidative transformations. Furthermore, the review addresses the key factors that influence the catalytic efficiency of perovskites, including charge recombination, reaction mechanisms involving free radicals, hydroxyl ions, and other ions, as well as phase transformation and solvent compatibility. By offering a comprehensive overview, this review aims to serve as a guide for the design of MHP-based photocatalysis and shed light on the common challenges faced by the scientific community in the domain of organic transformations.
Collapse
Affiliation(s)
- Hairong Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Jiachen Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Sonu Kumar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Peihang Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | | | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Udayabhaskararao Thumu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
5
|
Liu J, Wu Z, Zhang F, Zhao M, Li C, Li J, Wen B, Wang F. In situ growth of lead-free halide perovskites into SiO 2 sub-microcapsules toward water-stable photocatalytic CO 2 reduction. NANOSCALE 2023; 15:7023-7031. [PMID: 36971210 DOI: 10.1039/d3nr00128h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Halide perovskites (HPs) are highly susceptible to heat, light, or moisture and are easily decomposed even in an ambient environment, which greatly hinders their practical applications. Herein, an in situ growth strategy is presented for implanting an inorganic lead-free HP, Cs2AgBiBr6, into SiO2 sub-microcapsules to form a Cs2AgBiBr6@SiO2 yolk-shell composite. The SiO2 sub-microcapsule endows Cs2AgBiBr6 with good thermal and light stability, as well as excellent corrosion resistance against polar solvents. Furthermore, when employed as a lead-free perovskite photocatalyst, the composite exhibits a higher visible-light-driven CO2-to-CO rate (271.76 μmol g-1 h-1) and much better stability than Cs2AgBiBr6 in water. The formation of a Cs2AgBiBr6/SiO2 heterostructure using an in situ growth method alleviates water binding on the perovskites, supported by density functional theory calculations, which is the key to an improvement in the stability of the composite. The in situ growth strategy developed here sheds light on the design and development of HP-based materials for applications involving polar solvents.
Collapse
Affiliation(s)
- Jie Liu
- Henan Key Laboratory of Photovoltaic Materials, Henan University, 1 Jinming Road, 475004 Kaifeng, China.
| | - Ziho Wu
- School of Physics and Electronics, Henan University, 1 Jinming Road, 475004 Kaifeng, China.
| | - Feng Zhang
- Henan Key Laboratory of Photovoltaic Materials, Henan University, 1 Jinming Road, 475004 Kaifeng, China.
| | - Mengzhen Zhao
- Henan Key Laboratory of Photovoltaic Materials, Henan University, 1 Jinming Road, 475004 Kaifeng, China.
| | - Chao Li
- Henan Key Laboratory of Photovoltaic Materials, Henan University, 1 Jinming Road, 475004 Kaifeng, China.
| | - Jie Li
- School of Physics and Electronics, Henan University, 1 Jinming Road, 475004 Kaifeng, China.
| | - Bo Wen
- School of Physics and Electronics, Henan University, 1 Jinming Road, 475004 Kaifeng, China.
| | - Feijiu Wang
- Henan Key Laboratory of Photovoltaic Materials, Henan University, 1 Jinming Road, 475004 Kaifeng, China.
- Center for Topological Functional Materials, Henan University, 1 Jinming Road, 475004 Kaifeng, China.
| |
Collapse
|
6
|
Chen ZY, Huang NY, Xu Q. Metal halide perovskite materials in photocatalysis: Design strategies and applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
7
|
Chen YH, Tsai KA, Liu TW, Chang YJ, Wei YC, Zheng MW, Liu SH, Liao MY, Sie PY, Lin JH, Tseng SW, Pu YC. Charge Carrier Dynamics of CsPbBr 3/g-C 3N 4 Nanoheterostructures in Visible-Light-Driven CO 2-to-CO Conversion. J Phys Chem Lett 2023; 14:122-131. [PMID: 36574643 DOI: 10.1021/acs.jpclett.2c03474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The photon energy-dependent selectivity of photocatalytic CO2-to-CO conversion by CsPbBr3 nanocrystals (NCs) and CsPbBr3/g-C3N4 nanoheterostructures (NHSs) was demonstrated for the first time. The surficial capping ligands of CsPbBr3 NCs would adsorb CO2, resulting in the carboxyl intermediate to process the CO2-to-CO conversion via carbene pathways. The type-II energy band structure at the heterojunction of CsPbBr3/g-C3N4 NHSs would separate the charge carriers, promoting the efficiency in photocatalytic CO2-to-CO conversion. The electron consumption rate of CO2-to-CO conversion for CsPbBr3/g-C3N4 NHSs was found to intensively depend on the rate constant of interfacial hole transfer from CsPbBr3 to g-C3N4. An in situ transient absorption spectroscopy investigation revealed that the half-life time of photoexcited electrons in optimized CsPbBr3/g-C3N4 NHS was extended two times more than that in the CsPbBr3 NCs, resulting in the higher probability of charge carriers to carry out the CO2-to-CO conversion. The current work presents important and novel insights of semiconductor NHSs for solar energy-driven CO2 conversion.
Collapse
Affiliation(s)
- Yu-Hung Chen
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kai-An Tsai
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| | - Tzu-Wei Liu
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| | - Yao-Jen Chang
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| | - Yu-Chen Wei
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| | - Meng-Wei Zheng
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shou-Heng Liu
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung City 900, Pingtung, Taiwan
| | - Pei-Yu Sie
- Department of Applied Chemistry, National Pingtung University, Pingtung City 900, Pingtung, Taiwan
| | - Jarrn-Horng Lin
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| | - Shih-Wen Tseng
- Core Facility Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ying-Chih Pu
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| |
Collapse
|
8
|
Kumar S, Choudhary RB. FRET Mechanism of SnO2 Integrated Luminescent g-C3N4 Nanocomposite and Its Robust Chemical, Optical and Thermal States for Emissive Layer Application. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-022-02524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Das R, Patra A, Dutta SK, Shyamal S, Pradhan N. Facets-Directed Epitaxially Grown Lead Halide Perovskite-Sulfobromide Nanocrystal Heterostructures and Their Improved Photocatalytic Activity. J Am Chem Soc 2022; 144:18629-18641. [PMID: 36174102 DOI: 10.1021/jacs.2c08639] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lead halide perovskite nanocrystal heterostructures have been extensively studied in the recent past for improving their photogenerated charge carriers mobility. However, most of such heterostructures are formed with random connections without having strong evidence of epitaxial relation. Perovskite-chalcohalides are the first in this category, where all-inorganic heterostructures are formed with epitaxial growth. Going beyond one facet, herein, different polyhedral nanocrystals of CsPbBr3 are explored for facet-selective secondary epitaxial sulfobromide growths. Following a decoupled synthesis process, the heterojunctions are selectively established along {110} as well as {200} facets of 26-faceted rhombicuboctahedrons, the {110} facets of armed hexapods, and the {002} facets of 12-faceted dodecahedron nanocrystals of orthorhombic CsPbBr3. Lattice matching induced these epitaxial growths, and their heterojunctions have been extensively studied with electron microscopic imaging. Unfortunately, these heterostructures did not retain the intense host emission because of their indirect band structures, but such combinations are found to be ideal for promoting photocatalytic CO2 reduction. The pseudo-Type-II combination helped here in the successful movement of charge carriers and also improved the rate of catalysis. These results suggest that facet-selective all-inorganic perovskite heterostructures can be epitaxially grown and this could help in improving their catalytic activities.
Collapse
Affiliation(s)
- Rajdeep Das
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Avijit Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sumit Kumar Dutta
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sanjib Shyamal
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
10
|
Xu S, Yang L, Wei Y, Jia Y, Hu M, Bai L, Zhang J, Li X, Wei S, Lu J. Monochromatic light-enhanced photocatalytic CO 2 reduction based on exciton properties of two-dimensional lead halide perovskites. Dalton Trans 2022; 51:8036-8045. [PMID: 35552583 DOI: 10.1039/d2dt00972b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Converting CO2 into valuable solar fuels through photocatalysis has been considered a green and sustainable technology that is promising for alleviating global warming and providing energy in an environmentally friendly manner. However, traditional photocatalysts generally suffer from low surface-reactive reaction sites, inefficient light harvesting and rapid recombination of electron-hole pairs. Lead halide perovskite materials have been considered ideal semiconductor photocatalysts for photocatalytic CO2 reduction due to their tunable band gaps, strong light absorption, and low cost. Herein, a series of L2Csn-1PbnX3n+1 (L = ba, ha, oa; X = Cl, Br, I; n = 1, 2) 2D layered perovskites were synthesized by a facile solvothermal method. The effects of alkyl amine chain length, halogen atoms and inorganic layer number on their properties were studied. More importantly, these 2D materials were used as photocatalysts for CO2 reduction without any sacrificial agents. These 2D perovskites exhibited markedly increased performance in comparison with 3D bulk materials, benefitting from the larger surface-area-to-volume ratio and faster and more efficient exciton dissociation, which achieved the highest CO yield of 158.69 μmol g-1 h-1 and CH4 yield of 6.9 μmol g-1 h-1 through the design of the photocatalytic system. In addition, the influence of light source conditions on photocatalysis was studied systematically, including light source intensity and wavelength. The experimental results indicated that an appropriate solvent, high light intensity and monochromatic light source matching the wavelength of exciton absorption can effectively improve the photocatalytic efficiency.
Collapse
Affiliation(s)
- Shengqi Xu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Lu Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yixuan Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yiming Jia
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Meiqi Hu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Lianxia Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Junzheng Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xinxin Li
- Analytic and Testing Center, Beijing Normal University, Beijing 100875, P. R. China
| | - Shuo Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Jun Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
11
|
Humayun M, Wang C, Luo W. Recent Progress in the Synthesis and Applications of Composite Photocatalysts: A Critical Review. SMALL METHODS 2022; 6:e2101395. [PMID: 35174987 DOI: 10.1002/smtd.202101395] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Photocatalysis is an advanced technique that transforms solar energy into sustainable fuels and oxidizes pollutants via the aid of semiconductor photocatalysts. The main scientific and technological challenges for effective photocatalysis are the stability, robustness, and efficiency of semiconductor photocatalysts. For practical applications, researchers are trying to develop highly efficient and stable photocatalysts. Since the literature is highly scattered, it is urgent to write a critical review that summarizes the state-of-the-art progress in the design of a variety of semiconductor composite photocatalysts for energy and environmental applications. Herein, a comprehensive review is presented that summarizes an overview, history, mechanism, advantages, and challenges of semiconductor photocatalysis. Further, the recent advancements in the design of heterostructure photocatalysts including alloy quantum dots based composites, carbon based composites including carbon nanotubes, carbon quantum dots, graphitic carbon nitride, and graphene, covalent-organic frameworks based composites, metal based composites including metal carbides, metal halide perovskites, metal nitrides, metal oxides, metal phosphides, and metal sulfides, metal-organic frameworks based composites, plasmonic materials based composites and single atom based composites for CO2 conversion, H2 evolution, and pollutants oxidation are discussed elaborately. Finally, perspectives for further improvement in the design of composite materials for efficient photocatalysis are provided.
Collapse
Affiliation(s)
- Muhammad Humayun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wei Luo
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
12
|
Huang H, Weng B, Zhang H, Lai F, Long J, Hofkens J, Douthwaite RE, Steele JA, Roeffaers MBJ. Solar-to-Chemical Fuel Conversion via Metal Halide Perovskite Solar-Driven Electrocatalysis. J Phys Chem Lett 2022; 13:25-41. [PMID: 34957833 DOI: 10.1021/acs.jpclett.1c03668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sunlight is an abundant and clean energy source, the harvesting of which could make a significant contribution to society's increasing energy demands. Metal halide perovskites (MHP) have recently received attention for solar fuel generation through photocatalysis and solar-driven electrocatalysis. However, MHP photocatalysis is limited by low solar energy conversion efficiency, poor stability, and impractical reaction conditions. Compared to photocatalysis, MHP solar-driven electrocatalysis not only exhibits higher solar conversion efficiency but also is more stable when operating under practical reaction conditions. In this Perspective, we outline three leading types of MHP solar-driven electrocatalysis device technologies now in the research spotlight, namely, (1) photovoltaic-electrochemical (PV-EC), (2) photovoltaic-photoelectrochemical (PV-PEC), and (3) photoelectrochemical (PEC) approaches for solar-to-fuel reactions, including water-splitting and the CO2 reduction reaction. In addition, we compare each technology to show their relative technical advantages and limitations and highlight promising research directions for the rapidly emerging scientific field of MHP-based solar-driven electrocatalysis.
Collapse
Affiliation(s)
- Haowei Huang
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Bo Weng
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Hongwen Zhang
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Jinlin Long
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | | | - Julian A Steele
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Maarten B J Roeffaers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
13
|
Pachaiappan R, Rajendran S, Senthil Kumar P, Vo DVN, K.A. Hoang T. A review of recent progress on photocatalytic carbon dioxide reduction into sustainable energy products using carbon nitride. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Liu Y, Ma Z. Combining g-C3N4 with CsPbI3 for efficient photocatalysis under visible light. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Recent developments on hybrid perovskite materials for solar energy conversion and environmental protection. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Ghimire S, Klinke C. Two-dimensional halide perovskites: synthesis, optoelectronic properties, stability, and applications. NANOSCALE 2021; 13:12394-12422. [PMID: 34240087 DOI: 10.1039/d1nr02769g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Halide perovskites are promising materials for light-emitting and light-harvesting applications. In this context, two-dimensional perovskites such as nanoplatelets or Ruddlesden-Popper and Dion-Jacobson layered structures are important because of their structural flexibility, electronic confinement, and better stability. This review article brings forth an extensive overview of the recent developments of two-dimensional halide perovskites both in the colloidal and non-colloidal forms. We outline the strategy to synthesize and control the shape and discuss different crystalline phases and optoelectronic properties. We review the applications of two-dimensional perovskites in solar cells, light-emitting diodes, lasers, photodetectors, and photocatalysis. Besides, we also emphasize the moisture, thermal, and photostability of these materials in comparison to their three-dimensional analogs.
Collapse
Affiliation(s)
- Sushant Ghimire
- Institute of Physics, University of Rostock, 18059 Rostock, Germany.
| | | |
Collapse
|
17
|
Méndez-Galván M, Alcántar-Vázquez B, Diaz G, Ibarra IA, Lara-García HA. Metal halide perovskites as an emergent catalyst for CO 2 photoreduction: a minireview. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00039j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present minireview summarizes recent advances in the application of metal halide perovskite for CO2 photoreduction.
Collapse
Affiliation(s)
| | - Brenda Alcántar-Vázquez
- Instituto de Ingeniería
- Coordinación de Ingeniería Ambiental
- Universidad Nacional Autónoma de México
- Ciudad de México
- Mexico
| | - Gabriela Diaz
- Instituto de Física
- Universidad Nacional Autónoma de México
- Ciudad de México
- Mexico
| | - Ilich A. Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS)
- Instituto de Investigaciones en Materiales
- Universidad Nacional Autónoma de México
- Ciudad de México
- Mexico
| | - Hugo A. Lara-García
- Instituto de Física
- Universidad Nacional Autónoma de México
- Ciudad de México
- Mexico
| |
Collapse
|
18
|
Abstract
Bromide-based metal halide perovskites (MHPs) are promising photocatalysts with strong blue-green light absorption. Composite photocatalysts of MHPs with MIL-100(Fe), as a powerful photocatalyst itself, have been investigated to extend the responsiveness towards red light. The composites, with a high specific surface area, display an enhanced solar light response, and the improved charge carrier separation in the heterojunctions is employed to maximize the photocatalytic performance. Optimization of the relative composition, with the formation of a dual-phase CsPbBr3 to CsPb2Br5 perovskite composite, shows an excellent photocatalytic performance with 20.4 μmol CO produced per gram of photocatalyst during one hour of visible light irradiation.
Collapse
|