Zhang Z, Zhang B, Han X, Chen H, Xue C, Peng M, Ma G, Ren Y. Stille type P-C coupling polycondensation towards phosphorus-crosslinked polythiophenes with P-regulated photocatalytic hydrogen evolution.
Chem Sci 2023;
14:2990-2998. [PMID:
36937600 PMCID:
PMC10016342 DOI:
10.1039/d2sc06702a]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Recently, exploring new type polymerization protocols has been a major driving force in advancing organic polymers into highly functional materials. Herein we report a new polycondensation protocol to implant the phosphorus (P) atom in the main backbone of crosslinked polythiophenes. The polycondensation harnesses a Stille phosphorus-carbon (P-C) coupling reaction between phosphorus halides and aryl stannanes that has not been reported previously. Mechanistic studies uncovered that the P-electrophile makes the reactivity of a catalytic Pd-center highly sensitive towards the chemical structures of aryl stannanes, which is distinct from the typical Stille carbon-carbon coupling reaction. The efficient P-C polycondensation afforded a series of P-crosslinked polythiophenes (PC-PTs). Leveraging on the direct P-crosslinking polymerization, solid-state 31P NMR studies revealed highly uniform crosslinking environments. Efficient post-polymerization P-chemistry was also applied to the PC-PTs, which readily yielded the polymers with various P-environments. As a proof of concept, new PC-PTs were applied as the photocatalysts for H2 evolution under visible light irradiation. PC-PTs with an ionic P(Me)-center exhibit a H2 evolution rate up to 2050 μmol h-1 g-1, which is much higher than those of PC-PTs with a P(O)-center (900 μmol h-1 g-1) and P(iii)-center (155 μmol h-1 g-1). For the first time, the studies reveal that regulating P-center environments can be an effective strategy for fine tuning the photocatalytic H2 evolution performance of organic polymers.
Collapse