1
|
Chen Q, Zhang J, Ye L, Liu N, Wang F. Methyl jasmonate induced tolerance effect of Pinus koraiensis to Bursaphelenchus xylophilus. PEST MANAGEMENT SCIENCE 2025; 81:80-92. [PMID: 39258814 DOI: 10.1002/ps.8407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Methyl jasmonate (MeJA) can affect the balance of hormones and regulate the disease resistance of plants. Exploring the application and mechanism of MeJA in inducing the tolerance of Pinus koraiensis to pine wood nematode (PWN) infection is of great significance for developing new strategies for pine wilt disease control. RESULTS Different concentrations (0.1, 1, 5 and 10 mm) of MeJA treatment groups showed differences in relative tolerance index and relative anti-nematode index of P. koraiensis seedlings to PWN infection. The treatment of 5 mm MeJA solution induced the best tolerance effect, followed by the 1 mm MeJA solution. Transcriptome analysis indicated that many plant defense-related genes upregulated after treatment with 1, 5 and 10 mm MeJA solutions. Among them, genes such as jasmonate ZIM domain-containing protein, phenylalanine ammonia-lyase and peroxidase also continuously upregulated after PWN infection. Metabolome analysis indicated that jasmonic acid (JA) was significantly increased at 7 days postinoculation with PWN, and after treatment with both 1 and 5 mm MeJA solutions. Integrated analysis of transcriptome and metabolome indicated that differences in JA accumulation might lead to ubiquitin-mediated proteolysis, and expression changes in trans-caffeic acid and trans-cinnamic acid-related genes, leading to the abundance differences of these two metabolisms and the formation of multiple lignin and glucosides. CONCLUSIONS MeJA treatment could activate the expression of defense-related genes that correlated with JA, regulate the abundance of defense-related secondary metabolites, and improve the tolerance of P. koraiensis seedlings to PWN infection. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiaoli Chen
- Key Laboratory of Alien Forest Pests Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, P. R. China
| | - Jiawei Zhang
- Key Laboratory of Alien Forest Pests Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin, P. R. China
| | - Lingfang Ye
- Key Laboratory of Alien Forest Pests Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin, P. R. China
| | - Nian Liu
- Key Laboratory of Alien Forest Pests Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin, P. R. China
| | - Feng Wang
- Key Laboratory of Alien Forest Pests Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Nation Forestry and Grassland Administration on Northeast Area Forest and Grass Dangerous Pest Management and Control, Shenyang Institute of Technology, Shenfu Reform and Innovation Demonstration Zone, Fushun, P. R. China
| |
Collapse
|
2
|
Qi J, Nan J, Zhao X, Liang C, Fan J, He H. Genetic Structure of Monochamus alternatus (Hope) in Qinling-Daba Mountains and Expansion Trend: Implications for Pest Prevention and Management. Ecol Evol 2024; 14:e70373. [PMID: 39381192 PMCID: PMC11461022 DOI: 10.1002/ece3.70373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Pine wilt disease (PWD), caused by Bursaphelenchus xylophilus, severely threatens global pine forests. Monochamus alternatus is the primary vector of B. xylophilus in East Asia. Understanding the population structure and evolutionary forces of vector insects is critical for establishing effective PWD management strategies. The present work explores the genetic structure and phylogenetic relationships of 20 populations of M. alternatus from the Qinling-Daba Mountains (QDM) in China using the mitochondria DNA dataset, supplemented by ecological niche modeling (ENM). All M. alternatus populations were categorized into three phylogeographic clusters (Clade A, Clade B, and Clade C), with Clade A and Clade B corresponding to the western and eastern QDM, respectively. The results of divergence time estimation concur with environmental changes induced by Quaternary glacial climate oscillations in QDM of China. M. alternatus populations exhibited significant genetic differentiation, with expansion in their population size. Ecological niche modeling (ENM) demonstrated that precipitation and temperature significantly influence the distribution of M. alternatus and the species is anticipated to grow into higher latitude and higher altitude regions in the future. In a nutshell, exploring the genetic structure and evolutionary dynamics of M. alternatus can provide valuable insights into the prevention and occurrence of B. xylophilus. These findings also serve as a reference for research on population differentiation and phylogeography of other species in QDM and adjacent areas.
Collapse
Affiliation(s)
- Jingyu Qi
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of ForestryNorthwest A&F UniversityYanglingChina
| | - Junke Nan
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaogu Zhao
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of ForestryNorthwest A&F UniversityYanglingChina
| | | | - Jiangbin Fan
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of ForestryNorthwest A&F UniversityYanglingChina
| | - Hong He
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of ForestryNorthwest A&F UniversityYanglingChina
| |
Collapse
|
3
|
Kamaruzzaman M, Zheng L, Zhou S, Ye W, Yuan Y, Qi Q, Gao Y, Tan J, Wang Y, Chen B, Li Z, Liu S, Mi R, Zhang K, Zhao C, Ahmed W, Wang X. Evaluation of the novel endophytic fungus Chaetomium ascotrichoides 1-24-2 from Pinus massoniana as a biocontrol agent against pine wilt disease caused by Bursaphelenchus xylophilus. PEST MANAGEMENT SCIENCE 2024; 80:4924-4940. [PMID: 38860543 DOI: 10.1002/ps.8205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Bursaphelenchus xylophilus, the causative agent of pine wilt disease (PWD), is an ever-increasing threat to Pinus forests worldwide. This study aimed to develop biological control of PWD by the application of endophytic fungi isolated from healthy pine trees. RESULTS We successfully isolated a novel endophytic fungal strain 1-24-2 from branches of healthy Pinus massoniana. The culture filtrates (CFs) of strain 1-24-2 exhibited strong nematicidal activity against Bursaphelenchus xylophilus, with a corrected mortality rate of 99.00%. Based on the morphological and molecular characteristics, the isolated strain 1-24-2 was identified as Chaetomium ascotrichoides. In the in-planta assay, pine seedlings (2-years-old) treated with 1-24-2 CFs + pine wood nematode (T2) showed a significant control effect of 80%. A total of 24 toxic compounds were first identified from 1-24-2 CFs through gas chromatography-mass spectrometry (GC-MS) analysis, from which O-methylisourea, 2-chlorobenzothiazole, and 4,5,6-trihydroxy-7-methylphthalide showed robust binding sites at Tyr119 against phosphoethanolamine methyltransferase (PMT) protein of Bursaphelenchus xylophilus by molecular docking approach and could be used as potential compounds for developing effective nematicides. Interestingly, strain 1-24-2 produces toxic volatile organic compounds (VOCs), which disturb the natural development process of B. xylophilus, whose total number decreased by up to 83.32% in the treatment group as compared to control and also reduced Botrytis cinerea growth by up to 71.01%. CONCLUSION Our results highlight the potential of C. ascotrichoides 1-24-2 as a promising biocontrol agent with solid nematicidal activity against B. xylophilus. This is the first report of C. ascotrichoides isolated from P. massoniana exhibiting strong biocontrol potential against B. xylophilus in the world. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Md Kamaruzzaman
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Lijun Zheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shun Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Wenhua Ye
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yongqiang Yuan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Qiu Qi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yongfeng Gao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Jiajin Tan
- College of Forestry and Grassland, Collaborative Innovation Center of Modern Forestry in South China, Nanjing Forestry University, Nanjing, China
| | - Yan Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Bingjia Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Zhiguang Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Songsong Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Renjun Mi
- Forestry Bureau of Chenxi County, Huaihua, China
| | - Ke Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Chen Zhao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Waqar Ahmed
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xinrong Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Vermelho AB, Moreira JV, Akamine IT, Cardoso VS, Mansoldo FRP. Agricultural Pest Management: The Role of Microorganisms in Biopesticides and Soil Bioremediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2762. [PMID: 39409632 PMCID: PMC11479090 DOI: 10.3390/plants13192762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Pesticide use in crops is a severe problem in some countries. Each country has its legislation for use, but they differ in the degree of tolerance for these broadly toxic products. Several synthetic pesticides can cause air, soil, and water pollution, contaminating the human food chain and other living beings. In addition, some of them can accumulate in the environment for an indeterminate amount of time. The agriculture sector must guarantee healthy food with sustainable production using environmentally friendly methods. In this context, biological biopesticides from microbes and plants are a growing green solution for this segment. Several pests attack crops worldwide, including weeds, insects, nematodes, and microorganisms such as fungi, bacteria, and viruses, causing diseases and economic losses. The use of bioproducts from microorganisms, such as microbial biopesticides (MBPs) or microorganisms alone, is a practice and is growing due to the intense research in the world. Mainly, bacteria, fungi, and baculoviruses have been used as sources of biomolecules and secondary metabolites for biopesticide use. Different methods, such as direct soil application, spraying techniques with microorganisms, endotherapy, and seed treatment, are used. Adjuvants like surfactants, protective agents, and carriers improve the system in different formulations. In addition, microorganisms are a tool for the bioremediation of pesticides in the environment. This review summarizes these topics, focusing on the biopesticides of microbial origin.
Collapse
Affiliation(s)
- Alane Beatriz Vermelho
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
- Center of Excellence in Fertilizers and Plant Nutrition (Cefenp), SEDEICS, Rio de Janeiro 21941-850, RJ, Brazil
| | - Jean Vinícius Moreira
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Ingrid Teixeira Akamine
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Veronica S. Cardoso
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Felipe R. P. Mansoldo
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| |
Collapse
|
5
|
Skrzecz I, Sierpińska A, Tumialis D. Entomopathogens in the integrated management of forest insects: from science to practice. PEST MANAGEMENT SCIENCE 2024; 80:2503-2514. [PMID: 37983918 DOI: 10.1002/ps.7871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
The most important aim of the integrated management of forest insect pests remains the prevention of insect outbreaks, which are a consequence of the interaction of many factors in forest ecosystems, including species composition, age and health of the forest, soil type, the presence of natural enemies, and climatic factors. Integrated pest management until now has been achieved using measures aimed at shaping the functioning of stands in a changing environment. The aim of this review is to summarize research on the use of entomopathogens (microorganisms and nematodes) in the management of forest insect pests and to identify the principal knowledge gaps. We briefly describe the main research directions on the use of pathogens and nematodes to control insect pests and discuss limitations affecting their implementation. Research on entomopathogens for the biocontrol of forest insects has provided a wealth of knowledge that can be used effectively to reduce insect populations. Despite this, few entomopathogens are currently used in integrated pest management in forestry. They are applied in inoculation or inundation biocontrol strategies. While the use of entomopathogens in forest pest management shows great promise, practical implementation remains a distant goal. Consequently, sustainable reduction of forest pests, mainly native species, will be largely based on conservation biological control, which aims to modify the environment to favor the activity of natural enemies that regulate pest populations. This type of biocontrol can be supported by a range of silvicultural measures to increase the resilience of stands to insect infestations. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Iwona Skrzecz
- Department of Forest Protection, Forest Research Institute, Raszyn, Poland
| | - Alicja Sierpińska
- Department of Forest Protection, Forest Research Institute, Raszyn, Poland
| | - Dorota Tumialis
- Department of Animal Environment Biology, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Mejía C, Rocha J, Sanabria J, Gómez-Álvarez MI, Quiroga-Cubides G. Performance of Metarhizium rileyi Nm017: nutritional supplementation to improve production and quality conidia. 3 Biotech 2024; 14:89. [PMID: 38406641 PMCID: PMC10894167 DOI: 10.1007/s13205-023-03911-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024] Open
Abstract
This study aimed to analyze the effect of nutritional supplements on improving conidia production of Metarhizium rileyi Nm017 at laboratory scale (yields of conidia/substrate and biomass/substrate, and substrate consumption). Also, the influence on quality parameters were evaluated (germination at 36 and 48 h, enzymatic activity, and insecticidal activity on Helicoverpa zea). Six treatments (T1-T6) were assessed and all of them reached maximum conidia concentration after 7 days fermentation, a feasible production timetable. Yields from treatment T6 (yeast extract + V8 juice) were 1.5-threefold higher than the other treatments. Conidia from T6 reached germinations of 56% and 12% at 36 and 48 h, respectively, higher than T1 (without supplements), which had the lowest values found. M. rileyi conidia obtained from treatment T6 had the highest enzymatic activity (0.45 U chitinase g-1, 0.28 U lipase g-1, and 1.29 U protease g-1). However, treatments with the highest conidia yields and enzymatic activity were not positively correlated to the efficacy against H. zea. When M. rileyi was produced on T5 (yeast hydrolysate + V8 juice), conidia were 35% more virulent than treatment T6. The findings evidenced the noticeable impact of nutritional substrate amended for conidia production and quality. This work showed the relevance of insecticidal activity assessment as a selection criterion in the mass production development of a biocontrol agent.
Collapse
Affiliation(s)
- Cindy Mejía
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Km 14 vía Mosquera-Bogotá, 250047 Mosquera, Colombia
| | - Jaime Rocha
- Departamento de Bioproductos, Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Sede Central. Km 14 vía Mosquera-Bogotá, 250047 Mosquera, Colombia
| | - Johanna Sanabria
- Departamento de Bioproductos, Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Sede Central. Km 14 vía Mosquera-Bogotá, 250047 Mosquera, Colombia
| | - Martha Isabel Gómez-Álvarez
- Departamento de Bioproductos, Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Sede Central. Km 14 vía Mosquera-Bogotá, 250047 Mosquera, Colombia
| | - Ginna Quiroga-Cubides
- Departamento de Bioproductos, Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Sede Central. Km 14 vía Mosquera-Bogotá, 250047 Mosquera, Colombia
| |
Collapse
|
7
|
Han X, Zhou T, Hu X, Zhu Y, Shi Z, Chen S, Liu Y, Weng X, Zhang F, Wu S. Discovery and Characterization of MaK: A Novel Knottin Antimicrobial Peptide from Monochamus alternatus. Int J Mol Sci 2023; 24:17565. [PMID: 38139394 PMCID: PMC10743862 DOI: 10.3390/ijms242417565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Knottin-type antimicrobial peptides possess exceptional attributes, such as high efficacy, low vulnerability to drug resistance, minimal toxicity, and precise targeting of drug sites. These peptides play a crucial role in the innate immunity of insects, offering protection against bacteria, fungi, and parasites. Knottins have garnered considerable interest as promising contenders for drug development due to their ability to bridge the gap between small molecules and protein-based biopharmaceuticals, effectively addressing the therapeutic limitations of both modalities. This work presents the isolation and identification of a novel antimicrobial peptide derived from Monochamus alternatus. The cDNA encodes a 56-amino acid knottin propeptide, while the mature peptide comprises only 34 amino acids. We have labeled this knottin peptide as MaK. Using chemically synthesized MaK, we evaluated its hemolytic activity, thermal stability, antibacterial properties, and efficacy against nematodes. The results of this study indicate that MaK is an exceptionally effective knottin-type peptide. It demonstrates low toxicity, superior stability, potent antibacterial activity, and the ability to suppress pine wood nematodes. Consequently, these findings suggest that MaK has potential use in developing innovative therapeutic agents to prevent and manage pine wilt disease.
Collapse
Affiliation(s)
- Xiaohong Han
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (X.H.); (Y.Z.); (Z.S.); (S.C.); (Y.L.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tong Zhou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Xinran Hu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (X.H.); (Y.Z.); (Z.S.); (S.C.); (Y.L.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yukun Zhu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (X.H.); (Y.Z.); (Z.S.); (S.C.); (Y.L.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zengzeng Shi
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (X.H.); (Y.Z.); (Z.S.); (S.C.); (Y.L.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shi Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (X.H.); (Y.Z.); (Z.S.); (S.C.); (Y.L.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunfei Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (X.H.); (Y.Z.); (Z.S.); (S.C.); (Y.L.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoqian Weng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (X.H.); (Y.Z.); (Z.S.); (S.C.); (Y.L.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feiping Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (X.H.); (Y.Z.); (Z.S.); (S.C.); (Y.L.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (X.H.); (Y.Z.); (Z.S.); (S.C.); (Y.L.); (X.W.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry, Fuzhou 350002, China
| |
Collapse
|
8
|
An Y, Li Y, Ma L, Li D, Zhang W, Feng Y, Liu Z, Wang X, Wen X, Zhang X. Transcriptomic response of Pinus massoniana to infection stress from the pine wood nematode Bursaphelenchus xylophilus. STRESS BIOLOGY 2023; 3:50. [PMID: 37991550 PMCID: PMC10665292 DOI: 10.1007/s44154-023-00131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
The pinewood nematode (PWN) Bursaphelenchus xylophilus is a forestry quarantine pest and causes an extremely dangerous forest disease that is spreading worldwide. Due to the complex pathogenic factors of pine wood nematode disease, the pathogenesis is still unknown. B. xylophilus ultimately invades a host and causes death. However, little is known about the defence-regulating process of host pine after infection by B. xylophilus at the molecular level. Therefore, we wanted to understand how Pinus massoniana regulates its response to invasion by B. xylophilus. P. massoniana were artificially inoculated with B. xylophilus solution, while those without B. xylophilus solution were used as controls. P. massoniana inoculated with B. xylophilus solution for 0 h, 6 h, 24 h, and 120 h was subjected to high-throughput sequencing to obtain transcriptome data. At various time points (0 h, 6 h, 24 h, 120 h), gene transcription was measured in P. massoniana inoculated with PWN. At different time points, P. massoniana gene transcription differed significantly, with a response to early invasion by PWN. According to Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, P. massoniana response to PWN invasion involves a wide range of genes, including plant hormone signal transformation, flavonoid biosynthesis, amino sugar and nucleoside sugar metabolism, and MAPK signalling pathways. Among them, inoculation for 120 hours had the greatest impact on differential genes. Subsequently, weighted gene coexpression network analysis (WGCNA) was used to analyse transcriptional regulation of P. massoniana after PWN infection. The results showed that the core gene module of P. massoniana responding to PWN was "MEmagenta", enriched in oxidative phosphorylation, amino sugar and nucleotide sugar metabolism, and the MAPK signalling pathway. MYB family transcription factors with the highest number of changes between infected and healthy pine trees accounted for 20.4% of the total differentially expressed transcription factors. To conclude, this study contributes to our understanding of the molecular mechanism of initial PWN infection of P. massoniana. Moreover, it provides some important background information on PWN pathogenic mechanisms.
Collapse
Affiliation(s)
- Yibo An
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, l00091, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Chongqing Forestry Investment and Development Co., Ltd., National Forestry and Grassland National Reserve Forest Engineering Technology Research Center, Chongqing, 401120, China
- Northeast Forestry University, College of Forestry, Harbin, 150040, China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, l00091, Beijing, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Ling Ma
- Northeast Forestry University, College of Forestry, Harbin, 150040, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, l00091, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Wei Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, l00091, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuqian Feng
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, l00091, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenkai Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, l00091, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuan Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, l00091, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaojian Wen
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, l00091, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, l00091, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
9
|
Graf T, Scheibler F, Niklaus PA, Grabenweger G. From lab to field: biological control of the Japanese beetle with entomopathogenic fungi. FRONTIERS IN INSECT SCIENCE 2023; 3:1138427. [PMID: 38469508 PMCID: PMC10926434 DOI: 10.3389/finsc.2023.1138427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/11/2023] [Indexed: 03/13/2024]
Abstract
The Japanese beetle, Popillia japonica, is an invasive scarab and listed as quarantine organism in many countries worldwide. Native to Japan, it has invaded North America, the Azores, and recently mainland Europe. Adults are gregarious and cause agricultural and horticultural losses by feeding on leaves, fruits, and flowers of a wide range of crops and ornamental plants. Larvae feed belowground and damage grassland. To date, no efficient and environmentally friendly control measure is available. Larval populations of other scarab species such as Phyllopertha horticola and Melolontha melolontha are controlled by applying spores of the entomopathogenic fungi Metarhizium brunneum and Beauveria brongniartii to larval habitats. Here, we tested this control strategy against Japanese beetle larvae in grasslands, as well as spore spray applications against adults in crops. Using both, large-scale field experiments and inoculation experiments in the laboratory, we assess the efficacy of registered fungal strains against Japanese beetle larvae and adults. Metarhizium brunneum BIPESCO 5 established and persisted in the soil of larval habitats and on the leaves of adult's host plants after application. However, neither larval nor adult population sizes were reduced at the study sites. Laboratory experiments showed that larvae are not susceptible to M. brunneum ART 212, M. brunneum BIPESCO 5, and B. brongniartii BIPESCO 2. In contrast, adults were highly susceptible to all three strains. When blastospores were directly injected into the hemolymph, both adults and larvae showed elevated mortality rates, which suggests that the cuticle plays an important role in determining the difference in susceptibility of the two life stages. In conclusion, we do not see potential in adapting the state-of-the-art control strategy against native scarabs to Japanese beetle larvae. However, adults are susceptible to the tested entomopathogenic fungi in laboratory settings and BIPESCO 5 conidiospores survived for more than three weeks in the field despite UV-radiation and elevated temperatures. Hence, control of adults using fungi of the genera Beauveria or Metarhizium is more promising than larval control. Further research on efficient application methods and more virulent and locally adapted fungal strains will help to increase efficacy of fungal treatments for the control of P. japonica.
Collapse
Affiliation(s)
- Tanja Graf
- Extension Arable Crops, Department of Plants and Plant Products, Agroscope, Zurich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Franziska Scheibler
- Extension Arable Crops, Department of Plants and Plant Products, Agroscope, Zurich, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Pascal A. Niklaus
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Giselher Grabenweger
- Extension Arable Crops, Department of Plants and Plant Products, Agroscope, Zurich, Switzerland
| |
Collapse
|
10
|
Deng J, Xu W, Lv G, Yuan H, Zhang QH, Wickham JD, Xu L, Zhang L. Associated bacteria of a pine sawyer beetle confer resistance to entomopathogenic fungi via fungal growth inhibition. ENVIRONMENTAL MICROBIOME 2022; 17:47. [PMID: 36085246 PMCID: PMC9463743 DOI: 10.1186/s40793-022-00443-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 05/24/2023]
Abstract
BACKGROUND The entomopathogenic Beauveria bassiana is a popular fungus used to control the Japanese pine sawyer, Monochamus alternatus Hope, the key vector of pine wood nematode (Bursaphelenchus xylophilus) that is the causal agent of pine wilt disease, resulting in devastating losses of pines in China and Portugal. However, recent studies have demonstrated that some insect-associated bacteria might decrease fungal toxicity and further undermine its biological control efficacy against M. alternatus. Thus, it is of great significance to uncover whether and how associated bacteria of M. alternatus become involved in the infection process of B. bassiana. RESULTS Here, we show that axenic M. alternatus larvae died significantly faster than non-axenic larvae infected by four increasing concentrations of B. bassiana spores (Log-rank test, P < 0.001). The infection of B. bassiana significantly changed the richness and structure of the beetle-associated bacterial community both on the cuticle and in the guts of M. alternatus; meanwhile, the abundance of Pseudomonas and Serratia bacteria were significantly enriched as shown by qPCR. Furthermore, these two bacteria genera showed a strong inhibitory activity against B. bassiana (One-way ANOVA, P < 0.001) by reducing the fungal conidial germination and growth rather than regulating host immunity. CONCLUSIONS This study highlights the role of insect-associated bacteria in the interaction between pest insects and entomopathogenic fungi, which should be taken into consideration when developing microbial-based pest control strategies.
Collapse
Affiliation(s)
- Jundan Deng
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei, 230036, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Weikang Xu
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei, 230036, China
| | - Guochang Lv
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei, 230036, China
| | - Hang Yuan
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei, 230036, China
| | - Qing-He Zhang
- Sterling International, Inc., Spokane, WA, 99216, USA
| | - Jacob D Wickham
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Prospect, Moscow, Russia, 119071
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Longwa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
11
|
Baek S, Noh MY, Mun S, Lee SJ, Arakane Y, Kim JS. Ultrastructural analysis of beetle larva cuticles during infection with the entomopathogenic fungus, Beauveria bassiana. PEST MANAGEMENT SCIENCE 2022; 78:3356-3364. [PMID: 35509233 DOI: 10.1002/ps.6962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Beauveria bassiana is one of the commercially available entomopathogenic fungi (EPF), and a number of isolates with high virulence and broad host spectrum have been used to control agricultural and forest pests. Although the functional importance of genes in EPFs' pathogenesis have been extensively studied, the precise ultrastructural mechanism of the fungal infection, particularly penetration of the host insect cuticles, is not well understood. RESULTS In this study, we investigated the morphology and ultrastructure of the larval cuticle of the red flour beetle, Tribolium castaneum, after treatment with B. bassiana ERL1170 expressing an enhanced green fluorescent protein (Bb-eGFP). The Bb-eGFP showed high virulence against the larvae, with approximately 90% mortality at 48 h after treatment (HAT) and 100% at 72 HAT under our infection conditions. In these larvae, the regions of the body wall with flexible cuticles, such as the ventral and ventrolateral thorax and abdomen, became darkly melanized, but there was little to no melanization in the rigid dorsal cuticular structures. Confocal microscopy and transmission electron microscopy (TEM) indicated that germinated conidia on the surface of the larval cuticle were evident at 6 HAT, which formed penetration pegs and began to penetrate the several cuticle layers/laminae by 12 HAT. The penetration pegs then developed invading hyphae, some of which passed through the cuticle and reached the epidermal cells by 24 HAT. The larval cuticle was aggressively and extensively disrupted by 48 HAT, and a number of outgrowing hyphae were observed at 72 HAT. CONCLUSIONS Our results indicate that Bb-eGFP is capable of infection and penetrating T. castaneum larvae shortly after inoculation (~24 HAT) at the body regions with apparently flexible and membranous cuticles, such as the ventral intersegmental regions and the ventrolateral pleura. This study provides details on the histopathogenesis of the host cuticle by infection and penetration of EPFs, which can facilitate the management of insect pests. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sehyeon Baek
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, South Korea
| | - Mi Young Noh
- Department of Forest Resources, AgriBio Institute of Climate Change Management, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Seulgi Mun
- Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Se Jin Lee
- Department of Agricultural Life Science, Sunchon National University, Suncheon, South Korea
| | - Yasuyuki Arakane
- Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Jae Su Kim
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, South Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
12
|
Zhao Y, Yuan Z, Wang S, Wang H, Chao Y, Sederoff RR, Sederoff H, Yan H, Pan J, Peng M, Wu D, Borriss R, Niu B. Gene sdaB Is Involved in the Nematocidal Activity of Enterobacter ludwigii AA4 Against the Pine Wood Nematode Bursaphelenchus xylophilus. Front Microbiol 2022; 13:870519. [PMID: 35602027 PMCID: PMC9121001 DOI: 10.3389/fmicb.2022.870519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bursaphelenchus xylophilus, a plant parasitic nematode, is the causal agent of pine wilt, a devastating forest tree disease. Essentially, no efficient methods for controlling B. xylophilus and pine wilt disease have yet been developed. Enterobacter ludwigii AA4, isolated from the root of maize, has powerful nematocidal activity against B. xylophilus in a new in vitro dye exclusion test. The corrected mortality of the B. xylophilus treated by E. ludwigii AA4 or its cell extract reached 98.3 and 98.6%, respectively. Morphological changes in B. xylophilus treated with a cell extract from strain AA4 suggested that the death of B. xylophilus might be caused by an increased number of vacuoles in non-apoptotic cell death and the damage to tissues of the nematodes. In a greenhouse test, the disease index of the seedlings of Scots pine (Pinus sylvestris) treated with the cells of strain AA4 plus B. xylophilus or those treated by AA4 cell extract plus B. xylophilus was 38.2 and 30.3, respectively, was significantly lower than 92.5 in the control plants treated with distilled water and B. xylophilus. We created a sdaB gene knockout in strain AA4 by deleting the gene that was putatively encoding the beta-subunit of L-serine dehydratase through Red homologous recombination. The nematocidal and disease-suppressing activities of the knockout strain were remarkably impaired. Finally, we revealed a robust colonization of P. sylvestris seedling needles by E. ludwigii AA4, which is supposed to contribute to the disease-controlling efficacy of strain AA4. Therefore, E. ludwigii AA4 has significant potential to serve as an agent for the biological control of pine wilt disease caused by B. xylophilus.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhibo Yuan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Shuang Wang
- Administrative Office of the Summer Palace, Beijing Municipal Administration Center of Parks, Beijing, China
| | - Haoyu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - He Yan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Jialiang Pan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Mu Peng
- College of Biological Science and Technology, Hubei Minzu University, Enshi, China
| | - Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Rainer Borriss
- Nord Reet UG, Greifswald, Germany
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- *Correspondence: Rainer Borriss,
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- Ben Niu,
| |
Collapse
|
13
|
Fernanda FV, Gleison GRQM, Atilon AVDA, Leila LPP, Clarice CMC. NATIVE AMAZONIAN FUNGI TO CONTROL TERMITES Nasutitermes sp. (BLATTODEA: TERMITIDAE). ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v27n1.86848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Termites of the Nasutitermes genus are considered one of the main urban and agroforestry pests in Brazil, where the main method of control is the application of pesticides. The uso of entomopathogenic fungi to reduce the population of this plague in the environment could be use as an alternative. The goal of this study was to evaluate the virulence of isolates native Amazonian fungi belonging to the Tolypocladium endophyticum, Metarhizium anisopliae and Metarhizium marquandii species for the control of Nasutitermes sp. The strains of T. endophyticum (4.439), M. anisopliae (4.443) and M. marquandii (4.472) with their respective isolation codes, were evaluated using suspensions at concentrations of 105, 106, 107 and 108 conidia/mL against the termites. The fungi were characterized to species level by molecular analysis. The greatest virulence was registered with T. endophyticum (4.439), with a mortality of 100 % on the 4th day of treatment for all analyzed concentrations. The M. anisopliae strain (4.443) proved to be efficient, causing a mortality of 100 % on the 7th and 6th days at dilutions of 107 and 108 conidia/mL, respectively. Rates lower than 100 % were registered with M. marquandii (4.472). Therefore, the three fungal strains showed virulence against the termites Nasutitermes sp. In this study, the fungi Tolypocladium endophyticum and Metarhizium marquandii are reported for the first time for the biological control of pests, indicating the potential of native Amazonian fungi for the biological control of thermites Nasutitermes sp.
Collapse
|