1
|
Kim JW, Lim HB, Jang JY, Shin HS. Sludge-based candidate reference materials for enhanced quality control of particulate processes in total organic carbon analysis for wastewater 1. CHEMOSPHERE 2024; 352:141458. [PMID: 38364920 DOI: 10.1016/j.chemosphere.2024.141458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Accurate analyses of total organic carbon (TOC) encompassing particulate organic carbon in wastewater are key for evaluating the behavior of particulate organic contaminants and maintaining the carbon mass balance throughout the wastewater treatment process. This study was conducted to develop candidate reference materials of environmental origin from excess sludge collected from wastewater treatment facilities, primarily receiving industrial wastewater and livestock manure as the main sources. Homogeneity and stability assessments for total carbon (TC) and TOC were conducted in the particle samples following the standardized procedures of ISO Guide 35 and ISO 13258. The results showed that high inorganic carbon (IC) content in particles, such as YJ(500) (IC: 29%), rendered them unsuitable for TOC quality control (QC), as they increased uncertainty in both homogeneity and stability assessments. Additionally, a13C NMR analysis revealed that samples with a high (O-alkyl)/(C-H-alkyl) ratio in their carbon structures exhibited relatively low stability. Through the homogeneity and stability assessments, a particle sample, YJ(100), was selected as the reference material (RM); the assigned values were as follows: 30.78% for TC and 27.94% for TOC, with uncertainties of 0.01% and 1.1%, respectively. Furthermore, considering sample transportation conditions, the safe storage period for the RM particles was determined to be 2 weeks under harsh conditions (at 40 °C). In our inter-laboratory test (n = 8) using the particle samples, we confirmed that the particle samples can effectively enhance particle processing QC and validate a proposed suspended solids pretreatment method. This study showcases valuable environmental particle sample production and evaluation, offering potential advancements in the QC of TOC analysis for wastewater samples.
Collapse
Affiliation(s)
- Joo-Won Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, South Korea
| | - Hye-Bin Lim
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jun-Young Jang
- Material Science and Environmental Engineering Unit, Tampere University, Tampere, 33014, Finland
| | - Hyun-Sang Shin
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, South Korea.
| |
Collapse
|
2
|
Mineo A, Di Leto Y, Cosenza A, Capri FC, Gallo G, Alduina R, Ni BJ, Mannina G. Enhancing volatile fatty acid production from sewage sludge in batch fermentation tests. CHEMOSPHERE 2024; 349:140859. [PMID: 38048828 DOI: 10.1016/j.chemosphere.2023.140859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Volatile fatty acids (VFA) from sewage sludge represent an excellent recovered resource from wastewater treatment. This study investigated four sludge pre-treatments (namely, potassium permanganate - KMnO4, initial pH = 10, initial pH = 2.5 and low-temperature thermal hydrolysis) by operating batch reactors under acidogenic fermentation conditions. Results revealed that 0.1 g KMnO4/g of total suspended solids represents the best pre-treatment obtaining up to 2713 mgCOD L-1 and 452 mgCOD/g of volatile suspended solids. These results also paralleled metataxonomic analysis highlighting changes in prokaryotic microbial structures of sewage sludge of the batch fermentations subjected to the different pre-treatments.
Collapse
Affiliation(s)
- Antonio Mineo
- Engineering Department, Palermo University, Viale delle Scienze, ed. 8, Palermo, Italy
| | - Ylenia Di Leto
- Chemical and Pharmaceutical Sciences and Technologies, Palermo University, Viale delle Scienze, ed. 16, Palermo, Italy
| | - Alida Cosenza
- Engineering Department, Palermo University, Viale delle Scienze, ed. 8, Palermo, Italy
| | - Fanny Claire Capri
- Chemical and Pharmaceutical Sciences and Technologies, Palermo University, Viale delle Scienze, ed. 16, Palermo, Italy
| | - Giuseppe Gallo
- Chemical and Pharmaceutical Sciences and Technologies, Palermo University, Viale delle Scienze, ed. 16, Palermo, Italy
| | - Rosa Alduina
- Chemical and Pharmaceutical Sciences and Technologies, Palermo University, Viale delle Scienze, ed. 16, Palermo, Italy
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze, ed. 8, Palermo, Italy.
| |
Collapse
|
3
|
Wang Q, Xin W, Shao Z, Usman M, Li J, Shang P, Kou Y, El-Din MG, Chen C. Role of pretreatment type and microbial mechanisms on enhancing volatile fatty acids production during anaerobic fermentation of refinery waste activated sludge. BIORESOURCE TECHNOLOGY 2023; 381:129122. [PMID: 37141997 DOI: 10.1016/j.biortech.2023.129122] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
This study compared the effects of alkaline, thermal, thermal-peroxymonosulfate (PMS), and alkyl polyglucose (APG) pretreatments on volatile fatty acids (VFAs) production from refinery waste activated sludge (RWAS), including VFAs yield, composition, organics components, microbial communities, and the potential improvement of mechanisms. All pretreatments effectively enhanced the bioconversion of RWAS and consequently promoted the hydrolysis process, which inhibited the methanogenesis process. However, the release of lignin/carboxyl-rich alicyclic molecules (CRAM)-like compounds and tannin substances in thermal-PMS and APG groups significantly influenced the acidogenesis and acetogenesis processes. Among all pretreatments, alkaline pretreatment showed the highest VFAs yield of 95.06 mg/g volatile solids (VS) and VS removal of 17%. This result could be associated with the enrichment of functional hydrolytic-acidification bacteria, such as Planococcus and Soehngenia, and increased metabolism of amino acids, carbohydrates, and nucleotides. By considering an economical and efficient perspective, this study recommended the alkaline pretreatment for the anaerobic fermentation of RWAS.
Collapse
Affiliation(s)
- Qinghong Wang
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Wenzhuo Xin
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Zhiguo Shao
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102200, China
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Jin Li
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Pengyin Shang
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yue Kou
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Chunmao Chen
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
4
|
Yao P, You A. Optimization of thermal-alkaline pretreatment for dewatering of excess sludge followed by thermal/persulfate oxidation for the elimination of extracellular ARGs in TAP-treated filtrate. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2210-2222. [PMID: 37186625 PMCID: wst_2023_128 DOI: 10.2166/wst.2023.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
This study evaluated the dewatering of excess sludge and the removal of extracellular antibiotic-resistant genes (eARGs) from the treated filtrate by thermal-alkaline pretreatment (TAP) and thermal/persulfate (PS). The optimization of TAP and thermal/PS was investigated during excess sludge dewatering and removal of eARGs via response surface methodology (RSM). The results demonstrated that TAP could effectively decrease the water content of excess sludge (41%) at optimum operating conditions (such as temperature: 88 °C, operation time: 90 min, pH: 11.2). However, the increase in eARGs abundance in TAP-treated filtrate is probably due to the dissolved effluent of the intracellular matter during dewatering. Therefore, TAP-treated filtrate was subjected to thermal/PS, and the removal of eARGs after TAP was explored. The desirability function was used to optimize two kinds of removal efficiencies of eARGs, simultaneously. The optimal pH, persulfate concentration, and reaction temperature were 10.2, 0.039 M, and 75.12 °C, respectively. 6.28 log·copies/mL of tetA and 6.57 log·copies/mL of sulI were removed under the above-mentioned conditions. The process provided efficient dewatering of excess sludge and elimination of eARGs from the filtrate.
Collapse
Affiliation(s)
- Pengcheng Yao
- Zhejiang Institute of Hydraulics and Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou, Zhejiang 310000, China E-mail:
| | - Aiju You
- Zhejiang Institute of Hydraulics and Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou, Zhejiang 310000, China E-mail:
| |
Collapse
|
5
|
Mohamed Hatta NS, Lau SW, Chua HB, Takeo M, Sen TK, Mubarak NM, Khalid M, Zairin DA. Parametric and kinetic studies of activated sludge dewatering by cationic chitosan-like bioflocculant BF01314 produced from Citrobacter youngae. ENVIRONMENTAL RESEARCH 2023; 224:115527. [PMID: 36822539 DOI: 10.1016/j.envres.2023.115527] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Bacterial strains belonging to Citrobacter spp. were reported to produce polysaccharides consisting of N-acetylglucosamine and glucosamine like chitosan, with high flocculation activity. In this work, the flocculation dewatering performance of activated sludge conditioned by a novel cationic chitosan-like bioflocculant (BF) named BF01314, produced from Citrobacter youngae GTC 01314, was evaluated under the influences of flocculant dosage, pH, and temperature. At BF dosage as low as 0.5 kg/t DS, the sludge dewaterability was significantly enhanced in comparison to the raw (untreated) sludge, featuring well-flocculated characteristic (reduction in CST from 22.0 s to 9.4 s) and good sludge filterability with reduced resistance (reduction in SRF by one order from 7.42 × 1011 to 9.59 × 1010 m/kg) and increased compactness of sludge (increase in CSC from 15.2 to 23.2%). Besides, the BF demonstrated comparable high sludge dewatering performance within the pH range between 2 and 8, and temperature range between 25 °C and 80 °C. Comparison between the BF, the pristine chitosan and the commercial cationic copolymer MF 7861 demonstrated equivalent performance with enhanced dewaterability at the dosage between 2.0 and 3.0 kg/t DS. Besides, the BF demonstrated strong flocculation activity (>99%) when added to the sludge suspension using moderate to high flocculation speeds (100-200 rpm) with at least 3-min mixing time. The BF's reaction in sludge flocculation was best fitted with a pseudo first-order kinetic model. Electrostatic charge patching and polymer bridging mechanisms are believed to be the dominant mechanistic phenomena during the BF's sludge conditioning process (coagulation-flocculation).
Collapse
Affiliation(s)
- Nur Syahirah Mohamed Hatta
- Department of Chemical and Energy Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Shiew Wei Lau
- Department of Chemical and Energy Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
| | - Han Bing Chua
- Department of Chemical and Energy Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Masahiro Takeo
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Tushar Kanti Sen
- Chemical Engineering Department, King Faisal University, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam.
| | - Mohammad Khalid
- Graphene and Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Uttaranchal University, Dehradun, 248007 Uttarakhand, India
| | - Danial Aminin Zairin
- Graphene and Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|