1
|
Saganuwan SA. Structure-activity relationship of pharmacophores and toxicophores: the need for clinical strategy. Daru 2024; 32:781-800. [PMID: 38935265 PMCID: PMC11555194 DOI: 10.1007/s40199-024-00525-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVES Sometimes clinical efficacy and potential risk of therapeutic and toxic agents are difficult to predict over a long period of time. Hence there is need for literature search with a view to assessing cause of toxicity and less efficacy of drugs used in clinical practice. METHOD Hence literatures were searched for physicochemical properties, chemical formulas, molecular masses, pH values, ionization, receptor type, agonist and antagonist, therapeutic, toxic and structure-activity relationship of chemical compounds with pharmacophore and toxicophore, with a view to identifying high efficacious and relative low toxic agents. Inclusion criteria were manuscripts published on PubMed, Scopus, Web of Science, PubMed Central, Google Scholar among others, between 1960 and 2023. Keywords such as pharmacophore, toxicophore, structure-activity-relationship and disease where also searched. The exclusion criteria were the chemicals that lack pharmacophore, toxicophore and manuscripts published before 1960. RESULTS Findings have shown that pharmacophore and toxicophore functional groups determine clinical efficacy and safety of therapeutics, but if they overlap therapeutic and toxicity effects go concurrently. Hence the functional groups, dose, co-administration and concentration of drugs at receptor, drug-receptor binding and duration of receptor binding are the determining factors of pharmacophore and toxicophore activity. Molecular mass, chemical configuration, pH value, receptor affinity and binding capacity, multiple pharmacophores, hydrophilic/lipophilic nature of the chemical contribute greatly to functionality of pharmacophore and toxicophore. CONCLUSION Daily single therapy, avoidance of reversible pharmacology, drugs with covalent adduct, maintenance of therapeutic dose, and the use of multiple pharmacophores for terminal diseases will minimize toxicity and improve efficacy.
Collapse
Affiliation(s)
- Saganuwan Alhaji Saganuwan
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Federal University of Agriculture, Makurdi, P.M.B. 2373, Benue State, Nigeria.
| |
Collapse
|
2
|
Svoboda R, Koutná N, Hynková M, Pakosta M. In Situ Raman Spectroscopy as a Valuable Tool for Monitoring Crystallization Kinetics in Molecular Glasses. Molecules 2024; 29:4769. [PMID: 39407696 PMCID: PMC11478080 DOI: 10.3390/molecules29194769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
The performance of in situ Raman microscopy (IRM) in monitoring the crystallization kinetics of amorphous drugs (griseofulvin and indomethacin) was evaluated using a comparison with the data obtained via differential scanning calorimetry (DSC). IRM was found to accurately and sensitively detect the initial stages of the crystal growth processes, including the rapid glass-crystal surface growth or recrystallization between polymorphic phases, with the reliable localized identification of the particular polymorphs being the main advantage of IRM over DSC. However, from the quantitative point of view, the reproducibility of the IRM measurements was found to be potentially significantly hindered due to inaccurate temperature recording and calibration, variability in the Raman spectra corresponding to the fully amorphous and crystalline phases, and an overly limited number of spectra possible to collect during acceptable experimental timescales because of the applied heating rates. Since theoretical simulations showed that, from the kinetics point of view, the constant density of collected data points per kinetic effect results in the smallest distortions, only the employment of the fast Raman mapping functions could advance the performance of IRM above that of calorimetric measurements.
Collapse
Affiliation(s)
- Roman Svoboda
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, nam. Cs. legii 565, 532 10 Pardubice, Czech Republic
| | - Nicola Koutná
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, nam. Cs. legii 565, 532 10 Pardubice, Czech Republic
| | - Magdalena Hynková
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, nam. Cs. legii 565, 532 10 Pardubice, Czech Republic
| | - Marek Pakosta
- Faculty of Electrical Engineering and Informatics, University of Pardubice, nam. Cs. legii 565, 530 02 Pardubice, Czech Republic
| |
Collapse
|
3
|
Umar S, Welch X, Obichere C, Carter-Cooper B, Samokhvalov A. Interaction of 6-Thioguanine with Aluminum Metal-Organic Framework Assisted by Mechano-Chemistry, In Vitro Delayed Drug Release, and Time-Dependent Toxicity to Leukemia Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1571. [PMID: 39404299 PMCID: PMC11477990 DOI: 10.3390/nano14191571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
6-thioguanine (6-TG) is an antimetabolite drug of purine structure, approved by the FDA for the treatment of acute myeloid lesukemia, and it is of interest in treating other diseases. The interaction of drugs with matrices is of interest to achieving a delayed, sustained, and local release. The interaction of 6-TG with an aluminum metal-organic framework (Al-MOF) DUT-4 is studied using a novel experimental approach, namely, mechano-chemistry by liquid-assisted grinding (LAG). The bonding of 6-TG to the DUT-4 matrix in the composite (6-TG)(DUT-4) was studied using ATR-FTIR spectroscopy and XRD. This interaction involves amino groups and C and N atoms of the heterocyclic ring of 6-TG, as well as the carboxylate COO- and (Al)O-H groups of the matrix, indicating the formation of the complex. Next, an in vitro delayed release of 6-TG was studied from composite powder versus pure 6-TG in phosphate buffered saline (PBS) at 37 °C. Herein, an automated drug dissolution apparatus with an autosampler was utilized, and the molar concentration of the released 6-TG was determined using an HPLC-UV analysis. Pure 6-TG shows a quick (<300 min) dissolution, while the composite gives the dissolution of non-bonded 6-TG, followed by a significantly (factor 6) slower release of the bonded drug. Each step of the release follows the kinetic pseudo-first-order rate law with distinct rate constants. Then, a pharmaceutical shaped body was prepared from the composite, and it yields a significantly delayed release of 6-TG for up to 10 days; a sustained release is observed with the 6-TG concentration being within the therapeutically relevant window. Finally, the composite shows a time-dependent (up to 9 days) stronger inhibition of leukemia MV-4-11 cell colonies than 6-TG.
Collapse
Affiliation(s)
- Sheriff Umar
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| | - Xavier Welch
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| | - Chihurumanya Obichere
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| | - Brandon Carter-Cooper
- Translational Laboratory Shared Services (TLSS), The University of Maryland School of Medicine’s & Greenebaum Comprehensive Cancer Center, 22 S. Greene Street, Baltimore, MD 21201, USA
| | - Alexander Samokhvalov
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| |
Collapse
|
4
|
Galeas DM, Tolbatov I, Colacino E, Maseras F. Computational study on the mechanism for the synthesis of active pharmaceutical ingredients nitrofurantoin and dantrolene in both solution and mechanochemical conditions. Phys Chem Chem Phys 2024; 26:24288-24293. [PMID: 39279546 DOI: 10.1039/d4cp01613k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
A combination of density functional theory (DFT) calculations and microkinetic simulations is applied to the study of condensation between N-acyl-hydrazides and aldehydes in acidic media to produce the active pharmaceutical ingredients (API) nitrofurantoin and dantrolene. Previous experimental reports have shown that the use of ball milling conditions leads to a reduction in the reaction time, which is associated with a significant reduction of waste. This result is reproduced by the current calculations, which additionally provide a detailed mechanistic explanation for this behavior.
Collapse
Affiliation(s)
- Dayana M Galeas
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, 43007, Tarragona, Spain
| | - Iogann Tolbatov
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, 43007, Tarragona, Spain
| | | | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, 43007, Tarragona, Spain
| |
Collapse
|
5
|
Umar S, Samokhvalov A. Encapsulation of Gemcitabine on Porphyrin Aluminum Metal-Organic Framework by Mechano-Chemistry, Delayed Drug Release and Cytotoxicity to Pancreatic Cancer PANC-1 Cells. Molecules 2024; 29:3189. [PMID: 38999141 PMCID: PMC11243361 DOI: 10.3390/molecules29133189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Gemcitabine is a widely used antimetabolite drug of pyrimidine structure, which can exist as a free-base molecular form (Gem). The encapsulated forms of medicinal drugs are of interest for delayed and local drug release. We utilized, for the first time, a novel approach of mechano-chemistry by liquid-assisted grinding (LAG) to encapsulate Gem on a "matrix" of porphyrin aluminum metal-organic framework Al-MOF-TCPPH2 (compound 2). The chemical bonding of Gem to compound 2 was studied by ATR-FTIR spectroscopy and powder XRD. The interaction involves the C=O group of Gem molecules, which indicates the formation of the encapsulation complex in the obtained composite. Further, the delayed release of Gem from the composite was studied to phosphate buffered saline (PBS) at 37 °C using an automated drug dissolution apparatus equipped with an autosampler. The concentration of the released drug was determined by HPLC-UV analysis. The composite shows delayed release of Gem due to the bonded form and constant concentration thereafter, while pure Gem shows quick dissolution in less than 45 min. Delayed release of Gem drug from the composite follows the kinetic pseudo-first-order rate law. Further, for the first time, the mechanism of delayed release of Gem was assessed by the variable stirring speed of drug release media, and kinetic rate constant k was found to decrease when stirring speed is decreased (diffusion control). Finally, the prolonged time scale of toxicity of Gem to pancreatic cancer PANC-1 cells was studied by continuous measurements of proliferation (growth) for 6 days, using the xCELLigence real-time cell analyzer (RTCA), for the composite vs. pure drug, and their differences indicate delayed drug release. Aluminum metal-organic frameworks are new and promising materials for the encapsulation of gemcitabine and related small-molecule antimetabolites for controlled delayed drug release and potential use in drug-eluting implants.
Collapse
Affiliation(s)
| | - Alexander Samokhvalov
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| |
Collapse
|
6
|
Ardila-Fierro KJ, Hernández JG. Intermediates in Mechanochemical Reactions. Angew Chem Int Ed Engl 2024; 63:e202317638. [PMID: 38179857 DOI: 10.1002/anie.202317638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Mechanochemical reactions offer methodological and environmental advantages for chemical synthesis, constantly attracting attention within the scientific community. Besides unmistakable sustainability advantages, the conditions under which mechanochemical reactions occur, namely solventless conditions, sometimes facilitate the isolation of otherwise labile or inaccessible products. Despite these advantages, limited knowledge exists regarding the mechanisms of these reactions and the types of intermediates involved. Nevertheless, in an expanding number of cases, ex situ and in situ monitoring techniques have allowed for the observation, characterization, and isolation of reaction intermediates in mechanochemical transformations. In this Minireview, we present a series of examples in which reactive intermediates have been detected in mechanochemical reactions spanning organic, organometallic, inorganic, and materials chemistry. Many of these intermediates were stabilized by non-covalent interactions, which played a pivotal role in guiding the chemical transformations. We believe that by uncovering and understanding such instances, the growing mechanochemistry community could find novel opportunities in catalysis and discover new mechanochemical reactions while achieving simplification in chemical reaction design.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia
| | - José G Hernández
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia
| |
Collapse
|
7
|
Bodach A, Portet A, Winkelmann F, Herrmann B, Gallou F, Ponnusamy E, Virieux D, Colacino E, Felderhoff M. Scalability of Pharmaceutical Co-Crystal Formation by Mechanochemistry in Batch. CHEMSUSCHEM 2024; 17:e202301220. [PMID: 37975728 DOI: 10.1002/cssc.202301220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023]
Abstract
The development of mechanochemistry is considerably growing. Benign by design, this technology complies with several principles of green chemistry, contributing to the achievement of the United Nations Sustainable Development Goals (UN SDGs) and the European Green Deal objectives. Herein, we report the use of mechanochemical processes in batch to prepare kilogram-scale of the Active Pharmaceutical Ingredient (API): Ibuprofen-Nicotinamide (rac-IBP:NCT) co-crystal in an industrial eccentric vibration mill. This scenario shows a sustainable approach to the industrial up-scaling of pharmaceutical co-crystals by a solvent-free mechanochemical process in batch. The quantitative assessment of the greenness of the mechanochemical process against the Twelve Principles of Green Chemistry was performed using the DOZN 2.0 Green Chemistry Evaluator.
Collapse
Affiliation(s)
- Alexander Bodach
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| | - Anaïs Portet
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Frederik Winkelmann
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| | - Bastian Herrmann
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| | | | - Ettigounder Ponnusamy
- Merck, SIGMA-ALDRICH Production GmbH, Industriestrasse 25, CH-9471, Buchs, Switzerland
| | - David Virieux
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Michael Felderhoff
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
8
|
Silva IDA, Bartalucci E, Bolm C, Wiegand T. Opportunities and Challenges in Applying Solid-State NMR Spectroscopy in Organic Mechanochemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304092. [PMID: 37407000 DOI: 10.1002/adma.202304092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
In recent years it is shown that mechanochemical strategies can be beneficial in directed conversions of organic compounds. Finding new reactions proved difficult, and due to the lack of mechanistic understanding of mechanochemical reaction events, respective efforts have mostly remained empirical. Spectroscopic techniques are crucial in shedding light on these questions. In this overview, the opportunities and challenges of solid-state nuclear magnetic resonance (NMR) spectroscopy in the field of organic mechanochemistry are discussed. After a brief discussion of the basics of high-resolution solid-state NMR under magic-angle spinning (MAS) conditions, seven opportunities for solid-state NMR in the field of organic mechanochemistry are presented, ranging from ex situ approaches to structurally elucidated reaction products obtained by milling to the potential and limitations of in situ solid-state NMR approaches. Particular strengths of solid-state NMR, for instance in differentiating polymorphs, in NMR-crystallographic structure-determination protocols, or in detecting weak noncovalent interactions in molecular-recognition events employing proton-detected solid-state NMR experiments at fast MAS frequencies, are discussed.
Collapse
Affiliation(s)
| | - Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
9
|
Kapusterynska A, Bijani C, Paliwoda D, Vendier L, Bourdon V, Imbert N, Cojean S, Loiseau PM, Recchia D, Scoffone VC, Degiacomi G, Akhir A, Saxena D, Chopra S, Lubenets V, Baltas M. Mechanochemical Studies on Coupling of Hydrazines and Hydrazine Amides with Phenolic and Furanyl Aldehydes-Hydrazones with Antileishmanial and Antibacterial Activities. Molecules 2023; 28:5284. [PMID: 37446945 DOI: 10.3390/molecules28135284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Hydrazone compounds represent an important area of research that includes, among others, synthetic approaches and biological studies. A series of 17 hydrazones have been synthesized by mechanochemical means. The fragments chosen were phenolic and furanyl aldehydes coupled with 12 heterocyclic hydrazines or hydrazinamides. All compounds can be obtained quantitatively when operating on a planetary ball mill and a maximum reaction time of 180 min (6 cycles of 30 min each). Complete spectroscopic analyses of hydrazones revealed eight compounds (3-5, 8-11, 16) present in one geometric form, six compounds (1, 2, 13-15) present in two isomeric forms, and three compounds (6, 7, 12) where one rotation is restricted giving rise to two different forms. The single crystal X-ray structure of one of the hydrazones bearing the isoniazid fragment (8) indicates a crystal lattice consisting of two symmetry-independent molecules with different geometries. All compounds obtained were tested for anti-infectious and antibacterial activities. Four compounds (1, 3, 5 and 8) showed good activity against Mycobacterium tuberculosis, and one (7) was very potent against Staphylococcus aureus. Most interesting, this series of compounds displayed very promising antileishmanial activity. Among all, compound 9 exhibited an IC50 value of 0.3 µM on the Leishmania donovani intramacrophage amastigote in vitro model and a good selectivity index, better than miltefosine, making it worth evaluating in vivo.
Collapse
Affiliation(s)
- Anna Kapusterynska
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, 31077 Toulouse, France
| | - Christian Bijani
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, 31077 Toulouse, France
| | - Damian Paliwoda
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, 31077 Toulouse, France
| | - Laure Vendier
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, 31077 Toulouse, France
| | - Valérie Bourdon
- Technological and Expert Platform, Chemistry Institute of Toulouse ICT-UAR2599, University of Toulouse, CNRS, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France
| | - Nicolas Imbert
- Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, Faculty of Pharmacy, University Paris-Saclay, 91400 Orsay, France
| | - Sandrine Cojean
- Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, Faculty of Pharmacy, University Paris-Saclay, 91400 Orsay, France
| | - Philippe Marie Loiseau
- Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, Faculty of Pharmacy, University Paris-Saclay, 91400 Orsay, France
| | - Deborah Recchia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Viola Camilla Scoffone
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Giulia Degiacomi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Abdul Akhir
- Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Deepanshi Saxena
- Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Vira Lubenets
- Department of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, S. Bandery, 12, 79013 Lviv, Ukraine
| | - Michel Baltas
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, 31077 Toulouse, France
| |
Collapse
|
10
|
Ugbo FC, Porcu S, Corpino R, Pinna A, Carbonaro CM, Chiriu D, Smet PF, Ricci PC. Optimizing the Mechanoluminescent Properties of CaZnOS:Tb via Microwave-Assisted Synthesis: A Comparative Study with Conventional Thermal Methods. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093511. [PMID: 37176393 PMCID: PMC10180521 DOI: 10.3390/ma16093511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Recent developments in lighting and display technologies have led to an increased focus on materials and phosphors with high efficiency, chemical stability, and eco-friendliness. Mechanoluminescence (ML) is a promising technology for new lighting devices, specifically in pressure sensors and displays. CaZnOS has been identified as an efficient ML material, with potential applications as a stress sensor. This study focuses on optimizing the mechanoluminescent properties of CaZnOS:Tb through microwave-assisted synthesis. We successfully synthesized CaZnOS doped with Tb3+ using this method and compared it with samples obtained through conventional solid-state methods. We analyzed the material's characteristics using various techniques to investigate their structural, morphological, and optical properties. We then studied the material's mechanoluminescent properties through single impacts with varying energies. Our results show that materials synthesized through microwave methods exhibit similar optical and, primarily, mechanoluminescent properties, making them suitable for use in photonics applications. The comparison of the microwave and conventional solid-state synthesis methods highlights the potential of microwave-assisted methods to optimize the properties of mechanoluminescent materials for practical applications.
Collapse
Affiliation(s)
- Franca C Ugbo
- Department of Physics, University of Cagliari, S.p. no. 8 Km 0700, 09042 Monserrato, Cagliari, Italy
| | - Stefania Porcu
- Department of Physics, University of Cagliari, S.p. no. 8 Km 0700, 09042 Monserrato, Cagliari, Italy
| | - Riccardo Corpino
- Department of Physics, University of Cagliari, S.p. no. 8 Km 0700, 09042 Monserrato, Cagliari, Italy
| | - Andrea Pinna
- Department of Physics, University of Cagliari, S.p. no. 8 Km 0700, 09042 Monserrato, Cagliari, Italy
| | - Carlo Maria Carbonaro
- Department of Physics, University of Cagliari, S.p. no. 8 Km 0700, 09042 Monserrato, Cagliari, Italy
| | - Daniele Chiriu
- Department of Physics, University of Cagliari, S.p. no. 8 Km 0700, 09042 Monserrato, Cagliari, Italy
| | - Philippe F Smet
- LumiLab, Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, B-9000 Ghent, Belgium
| | - Pier Carlo Ricci
- Department of Physics, University of Cagliari, S.p. no. 8 Km 0700, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
11
|
Henry B, Samokhvalov A. Characterization of tautomeric forms of anti-cancer drug gemcitabine and their interconversion upon mechano-chemical treatment, using ATR-FTIR spectroscopy and complementary methods. J Pharm Biomed Anal 2023; 226:115243. [PMID: 36657351 PMCID: PMC9977068 DOI: 10.1016/j.jpba.2023.115243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Gemcitabine is a widely used anti-cancer drug of pyrimidine structure, which can exist as a free base molecular form in crystals. Tautomers are structural isomers of molecules, which interconvert via proton transfer. Mechano-chemistry studies reactions of solids under mechanical impact. We investigated gemcitabine free base for the presence of specific molecular tautomers, using ATR-FTIR spectroscopic analysis, powder XRD, optical microscopy and HPLC. The amino-keto tautomer has the characteristic infrared (IR) peak of the amino group at 3390 cm-1. For the first time, the imino-keto tautomer of gemcitabine free base was detected. The imino-keto tautomer has the characteristic IR peak of the =N-H group, and its peak due to the CO group in pyrimidine ring is shifted vs. that of the amino-keto tautomer. This serves as the unique spectroscopic "fingerprints" of these tautomers. The ATR-FTIR spectroscopic analysis shows that gemcitabine free base can be enriched with the amino-keto or the imino-keto tautomer. Further, we studied the transformation of gemcitabine free base in crystals between its tautomers under conditions of liquid-assisted grinding (LAG). The imino-keto tautomer undergoes tautomerization to the amino-keto tautomer, while the amino-keto tautomer remains stable. No destruction of molecules of gemcitabine free base, when present as either tautomer, occurs during LAG as was verified by the HPLC-UV analysis. LAG is a new, straightforward, facile and fast method to interconvert tautomers in crystals, and ATR-FTIR spectroscopy is a method of choice to study tautomerization reactions of pharmaceuticals. The presented approach is promising for analysis of crystals of drugs containing one or more than one tautomer, and the knowledge-driven design of composite materials, which contain specific tautomeric molecular forms of pyrimidines, purines and other biologically active heterocyclic compounds.
Collapse
Affiliation(s)
- Barrington Henry
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| | - Alexander Samokhvalov
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA.
| |
Collapse
|
12
|
Green solvent-free synthesis of new N-heterocycle-L-ascorbic acid hybrids and their antiproliferative evaluation. Future Med Chem 2022; 14:1187-1202. [DOI: 10.4155/fmc-2022-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: The authors' aim was to improve the application of copper-catalyzed azide-alkyne cycloaddition in the synthesis of hybrids containing biologically significant nucleobases and L-ascorbic acid scaffolds by introducing an environmentally friendly and waste-free ball mill. Results: Two series of hybrids with a purine, pyrrolo[2,3- d]pyrimidine or 5-substituted pyrimidine attached to 2,3-dibenzyl-L-ascorbic acid via a hydroxyethyl- (15a–23a) or ethylidene-1,2,3-triazolyl (15b–23b) bridge were prepared by ball milling and conventional synthesis. The unsaturated 6-chloroadenine L-ascorbic acid derivative 16b can be highlighted as a lead compound and showed strong antiproliferative activity against HepG2 (hepatocellular carcinoma) and SW620 (colorectal adenocarcinoma) cells. Conclusion: Mechanochemical synthesis was superior in terms of sustainability, reaction rate and yield, highlighting the advantageous applications of ball milling over classical reactions.
Collapse
|
13
|
Michalchuk AAL, Emmerling F. Time-Resolved In Situ Monitoring of Mechanochemical Reactions. Angew Chem Int Ed Engl 2022; 61:e202117270. [PMID: 35128778 PMCID: PMC9400867 DOI: 10.1002/anie.202117270] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 12/31/2022]
Abstract
Mechanochemical transformations offer environmentally benign synthesis routes, whilst enhancing both the speed and selectivity of reactions. In this regard, mechanochemistry promises to transform the way in which chemistry is done in both academia and industry but is greatly hindered by a current lack of mechanistic understanding. The continued development and use of time-resolved in situ (TRIS) approaches to monitor mechanochemical reactions provides a new dimension to elucidate these fascinating transformations. We here discuss recent trends in method development that have pushed the boundaries of mechanochemical research. New features of mechanochemical reactions obtained by TRIS techniques are subsequently discussed, which sheds light on how different TRIS approaches have been used. Emphasis is placed on the strength of combining complementary techniques. Finally, we outline our views on the potential of TRIS methods in mechanochemical research, towards establishing a new, environmentally benign paradigm in the chemical sciences.
Collapse
Affiliation(s)
- Adam A. L. Michalchuk
- BAM Federal Institute for Materials Research and TestingRichard-Willstätter-Strasse1112489BerlinGermany
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and TestingRichard-Willstätter-Strasse1112489BerlinGermany
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| |
Collapse
|
14
|
Lukin S, Germann LS, Friščić T, Halasz I. Toward Mechanistic Understanding of Mechanochemical Reactions Using Real-Time In Situ Monitoring. Acc Chem Res 2022; 55:1262-1277. [PMID: 35446551 DOI: 10.1021/acs.accounts.2c00062] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The past two decades have witnessed a rapid emergence of interest in mechanochemistry-chemical and materials reactivity achieved or sustained by the action of mechanical force-which has led to application of mechanochemistry to almost all areas of modern chemical and materials synthesis: from organic, inorganic, and organometallic chemistry to enzymatic reactions, formation of metal-organic frameworks, hybrid perovskites, and nanoparticle-based materials. The recent success of mechanochemistry by ball milling has also raised questions about the underlying mechanisms and has led to the realization that the rational development and effective harnessing of mechanochemical reactivity for cleaner and more efficient chemical manufacturing will critically depend on establishing a mechanistic understanding of these reactions. Despite their long history, the development of such a knowledge framework for mechanochemical reactions is still incomplete. This is in part due to the, until recently, unsurmountable challenge of directly observing transformations taking place in a rapidly oscillating or rotating milling vessel, with the sample being under the continuous impact of milling media. A transformative change in mechanistic studies of milling reactions was recently introduced through the first two methodologies for real-time in situ monitoring based on synchrotron powder X-ray diffraction and Raman spectroscopy. Introduced in 2013 and 2014, the two new techniques have inspired a period of tremendous method development, resulting also in new techniques for mechanistic mechanochemical studies that are based on temperature and/or pressure monitoring, extended X-ray fine structure (EXAFS), and, latest, nuclear magnetic resonance (NMR) spectroscopy. The new technologies available for real-time monitoring have now inspired the development of experimental strategies and advanced data analysis approaches for the identification and quantification of short-lived reaction intermediates, the development of new mechanistic models, as well as the emergence of more complex monitoring methodologies based on two or three simultaneous monitoring approaches. The use of these new opportunities has, in less than a decade, enabled the first real-time observations of mechanochemical reaction kinetics and the first studies of how the presence of additives, or other means of modifying the mechanochemical reaction, influence reaction rates and pathways. These studies have revealed multistep reaction mechanisms, enabled the identification of autocatalysis, as well as identified molecules and materials that have previously not been known or have even been considered not possible to synthesize through conventional approaches. Mechanistic studies through in situ powder X-ray diffraction (PXRD) and Raman spectroscopy have highlighted the formation of supramolecular complexes (for example, cocrystals) as critical intermediates in organic and metal-organic synthesis and have also been combined with isotope labeling strategies to provide a deeper insight into mechanochemical reaction mechanisms and atomic and molecular dynamics under milling conditions. This Account provides an overview of this exciting, rapidly evolving field by presenting the development and concepts behind the new methodologies for real-time in situ monitoring of mechanochemical reactions, outlining key advances in mechanistic understanding of mechanochemistry, and presenting selected studies important for pushing forward the boundaries of measurement techniques, data analysis, and mapping of reaction mechanisms.
Collapse
Affiliation(s)
- Stipe Lukin
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Luzia S. Germann
- Department of Chemistry, McGill University, 801 Sherbrooke St. W. H3A 0B8 Montreal, Canada
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke St. W. H3A 0B8 Montreal, Canada
| | - Ivan Halasz
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| |
Collapse
|
15
|
Michalchuk AAL, Emmerling F. Zeitaufgelöste In‐Situ‐Untersuchungen von mechanochemischen Reaktionen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adam A. L. Michalchuk
- BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Straße 11 12489 Berlin Deutschland
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Straße 11 12489 Berlin Deutschland
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
16
|
Leroy C, Métro TX, Hung I, Gan Z, Gervais C, Laurencin D. From Operando Raman Mechanochemistry to "NMR Crystallography": Understanding the Structures and Interconversion of Zn-Terephthalate Networks Using Selective 17O-Labeling. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:2292-2312. [PMID: 35281972 PMCID: PMC8908548 DOI: 10.1021/acs.chemmater.1c04132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The description of the formation, structure, and reactivity of coordination networks and metal-organic frameworks (MOFs) remains a real challenge in a number of cases. This is notably true for compounds composed of Zn2+ ions and terephthalate ligands (benzene-1,4-dicarboxylate, BDC) because of the difficulties in isolating them as pure phases and/or because of the presence of structural defects. Here, using mechanochemistry in combination with operando Raman spectroscopy, the observation of the formation of various zinc terephthalate compounds was rendered possible, allowing the distinction and isolation of three intermediates during the ball-milling synthesis of Zn3(OH)4(BDC). An "NMR crystallography" approach was then used, combining solid-state NMR (1H, 13C, and 17O) and density functional theory (DFT) calculations to refine the poorly described crystallographic structures of these phases. Particularly noteworthy are the high-resolution 17O NMR analyses, which were made possible in a highly efficient and cost-effective way, thanks to the selective 17O-enrichment of either hydroxyl or terephthalate groups by ball-milling. This allowed the presence of defect sites to be identified for the first time in one of the phases, and the nature of the H-bonding network of the hydroxyls to be established in another. Lastly, the possibility of using deuterated precursors (e.g., D2O and d 4-BDC) during ball-milling is also introduced as a means for observing specific transformations during operando Raman spectroscopy studies, which would not have been possible with hydrogenated equivalents. Overall, the synthetic and spectroscopic approaches developed herein are expected to push forward the understanding of the structure and reactivity of other complex coordination networks and MOFs.
Collapse
Affiliation(s)
- César Leroy
- ICGM,
Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | | | - Ivan Hung
- National
High Magnetic Laboratory (NHMFL), Tallahassee, Florida 32310-3706, United States
| | - Zhehong Gan
- National
High Magnetic Laboratory (NHMFL), Tallahassee, Florida 32310-3706, United States
| | - Christel Gervais
- Laboratoire
de Chimie de la Matière Condensée de Paris (LCMCP),
UMR 7574, Sorbonne Université, CNRS, F-75005 Paris, France
| | | |
Collapse
|
17
|
Puccetti F, Lukin S, Užarević K, Colacino E, Halasz I, Bolm C, Hernández JG. Mechanistic Insights on the Mechanosynthesis of Phenytoin, a WHO Essential Medicine. Chemistry 2022; 28:e202104409. [PMID: 35041251 PMCID: PMC9304275 DOI: 10.1002/chem.202104409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 01/20/2023]
Abstract
In recent years, mechanochemistry has enriched the toolbox of synthetic chemists, enabling faster and more sustainable access to new materials and existing products, including active pharmaceutical ingredients (APIs). However, molecular-level understanding of most mechanochemical reactions remains limited, delaying the implementation of mechanochemistry in industrial applications. Herein, we have applied in situ monitoring by Raman spectroscopy to the mechanosynthesis of phenytoin, a World Health Organization (WHO) Essential Medicine, enabling the observation, isolation, and characterization of key molecular-migration intermediates involved in the single-step transformation of benzil, urea, and KOH into phenytoin. This work contributes to the elucidation of a reaction mechanism that has been subjected to a number of interpretations over time and paints a clear picture of how mechanosynthesis can be applied and optimized for the preparation of added-value molecules.
Collapse
Affiliation(s)
- Francesco Puccetti
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Stipe Lukin
- Division of Physical ChemistryRuđer Bošković InstituteBijenička 5410000ZagrebCroatia
| | - Krunoslav Užarević
- Division of Physical ChemistryRuđer Bošković InstituteBijenička 5410000ZagrebCroatia
| | | | - Ivan Halasz
- Division of Physical ChemistryRuđer Bošković InstituteBijenička 5410000ZagrebCroatia
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - José G. Hernández
- Division of Physical ChemistryRuđer Bošković InstituteBijenička 5410000ZagrebCroatia
| |
Collapse
|
18
|
Puccetti F, Lukin S, Užarević K, Colacino E, Halasz I, Bolm C, Hernández JG. Mechanistic Insights on the Mechanosynthesis of Phenytoin, a WHO Essential Medicine. Chemistry 2022; 28:e202104409. [PMID: 35041251 DOI: 10.26434/chemrxiv-2021-mw7wp] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 05/27/2023]
Abstract
In recent years, mechanochemistry has enriched the toolbox of synthetic chemists, enabling faster and more sustainable access to new materials and existing products, including active pharmaceutical ingredients (APIs). However, molecular-level understanding of most mechanochemical reactions remains limited, delaying the implementation of mechanochemistry in industrial applications. Herein, we have applied in situ monitoring by Raman spectroscopy to the mechanosynthesis of phenytoin, a World Health Organization (WHO) Essential Medicine, enabling the observation, isolation, and characterization of key molecular-migration intermediates involved in the single-step transformation of benzil, urea, and KOH into phenytoin. This work contributes to the elucidation of a reaction mechanism that has been subjected to a number of interpretations over time and paints a clear picture of how mechanosynthesis can be applied and optimized for the preparation of added-value molecules.
Collapse
Affiliation(s)
- Francesco Puccetti
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Stipe Lukin
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Krunoslav Užarević
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | | | - Ivan Halasz
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| |
Collapse
|
19
|
Bento O, Luttringer F, El Dine TM, Pétry N, Bantreil X, Lamaty F. Sustainable Mechanosynthesis of Biologically Active Molecules. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ophélie Bento
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | | | | | - Nicolas Pétry
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | - Xavier Bantreil
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | - Frédéric Lamaty
- IBMM: Institut des Biomolecules Max Mousseron Chemistry 1919 Rte de Mende 34293 Montpellier FRANCE
| |
Collapse
|
20
|
Yuan Y, Wang L, Porcheddu A, Colacino E, Solin N. Mechanochemical Preparation of Protein : hydantoin Hybrids and Their Release Properties. CHEMSUSCHEM 2022; 15:e202102097. [PMID: 34817915 PMCID: PMC9299789 DOI: 10.1002/cssc.202102097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/20/2021] [Indexed: 05/04/2023]
Abstract
Mechanochemistry is a versatile methodology that can be employed both for covalent bond formation in organic synthesis as well as a mediator to allow preparation novel colloidal dispersions for drug delivery. Herein, ball-milling was employed for the solid-state preparation of fluorescent hydrophobic hydantoins, followed by the unprecedented mechanochemically-mediated complexation of hydrophobic hydantoins within hydrophilic protein β-lactoglobulin (BLG) and BLG nanofibrils (BLGNFs). These hydantoin:protein materials were in turn incorporated into hydrogels. The effect of incorporation of hydantoins into proteins, as well as the effect of protein structure, on the release properties were then investigated. The conversion of BLG to BLGNFs led to a more sustained release demonstrating that heat treatment of BLG into BLGNFs could be employed to modify release properties. To the best of our knowledge, this is the first example where protein : hydantoin complexes were prepared by mechanochemical methodology and mechanochemistry was combined with self-assembly in order to prepare protein nanomaterials for drug-delivery applications. In addition, the use of the developed protein materials is not limited to delivery of drugs but can for example be employed as components of smart food (delivery of nutrients) or release systems of pesticides.
Collapse
Affiliation(s)
- Yusheng Yuan
- Department of Physics, Chemistry, and BiologyBiomolecular and Organic ElectronicsLinköping University581 83LinköpingSweden
| | - Lei Wang
- Department of Physics, Chemistry, and BiologyBiomolecular and Organic ElectronicsLinköping University581 83LinköpingSweden
| | - Andrea Porcheddu
- Department of Chemical and Geological SciencesUniversity of CagliariCittadella UniversitariaSS 554 bivio per Sestu09042MonserratoItaly
| | | | - Niclas Solin
- Department of Physics, Chemistry, and BiologyBiomolecular and Organic ElectronicsLinköping University581 83LinköpingSweden
| |
Collapse
|
21
|
Yang X, Wu C, Su W, Yu J. Mechanochemical C−X/C−H Functionalization: An Alternative Strategy Access to Pharmaceuticals. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinjie Yang
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Chongyang Wu
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Weike Su
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Jingbo Yu
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| |
Collapse
|
22
|
Rautenberg M, Bhattacharya B, Witt J, Jain M, Emmerling F. In situ time-resolved monitoring of mixed-ligand metal–organic framework mechanosynthesis. CrystEngComm 2022. [DOI: 10.1039/d2ce00803c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of mixed-ligand metal–organic framework (MOF) formation, and the possible role of intermediate single-ligand metal complexes during mechanosynthesis, are explored for the first time.
Collapse
Affiliation(s)
- Max Rautenberg
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Biswajit Bhattacharya
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Julia Witt
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Mohit Jain
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany
- Department of Materials Science, Technical University of Darmstadt, Karolinenplatz 5, 64289 Darmstadt, Germany
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
23
|
Lukin S, Užarević K, Halasz I. Raman spectroscopy for real-time and in situ monitoring of mechanochemical milling reactions. Nat Protoc 2021; 16:3492-3521. [PMID: 34089023 DOI: 10.1038/s41596-021-00545-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/25/2021] [Indexed: 11/10/2022]
Abstract
Solid-state milling has emerged as an alternative, sustainable approach for preparing virtually all classes of compounds and materials. In situ reaction monitoring is essential to understanding the kinetics and mechanisms of these reactions, but it has proved difficult to use standard analytical techniques to analyze the contents of the closed, rapidly moving reaction chamber (jar). Monitoring by Raman spectroscopy is an attractive choice, because it allows uninterrupted data collection from the outside of a translucent milling jar. It complements the already established in situ monitoring based on powder X-ray diffraction, which has limited accessibility to the wider research community, because it requires a synchrotron X-ray source. The Raman spectroscopy monitoring setup used in this protocol consists of an affordable, small portable spectrometer, a laser source and a Raman probe. Translucent reaction jars, most commonly made from a plastic material, enable interaction of the laser beam with the solid sample residing inside the closed reaction jar and collection of Raman-scattered photons while the ball mill is in operation. Acquired Raman spectra are analyzed using commercial or open-source software for data analysis (e.g., MATLAB, Octave, Python, R). Plotting the Raman spectra versus time enables qualitative analysis of reaction paths. This is demonstrated for an example reaction: the formation in the solid state of a cocrystal between nicotinamide and salicylic acid. A more rigorous data analysis can be achieved using multivariate analysis.
Collapse
|
24
|
Ardila-Fierro KJ, Hernández JG. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. CHEMSUSCHEM 2021; 14:2145-2162. [PMID: 33835716 DOI: 10.1002/cssc.202100478] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Indexed: 05/22/2023]
Abstract
In recent years, mechanochemistry has been growing into a widely accepted alternative for chemical synthesis. In addition to their efficiency and practicality, mechanochemical reactions are also recognized for their sustainability. The association between mechanochemistry and Green Chemistry often originates from the solvent-free nature of most mechanochemical protocols, which can reduce waste production. However, mechanochemistry satisfies more than one of the Principles of Green Chemistry. In this Review we will present a series of examples that will clearly illustrate how mechanochemistry can significantly contribute to the fulfillment of Green Chemistry in a more holistic manner.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| |
Collapse
|
25
|
Ying P, Yu J, Su W. Liquid‐Assisted Grinding Mechanochemistry in the Synthesis of Pharmaceuticals. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001245] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ping Ying
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jingbo Yu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
26
|
Fiss BG, Richard AJ, Douglas G, Kojic M, Friščić T, Moores A. Mechanochemical methods for the transfer of electrons and exchange of ions: inorganic reactivity from nanoparticles to organometallics. Chem Soc Rev 2021; 50:8279-8318. [DOI: 10.1039/d0cs00918k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For inorganic metathesis and reduction reactivity, mechanochemistry is demonstrating great promise towards both nanoparticles and organometallics syntheses.
Collapse
Affiliation(s)
- Blaine G. Fiss
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Austin J. Richard
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Georgia Douglas
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Monika Kojic
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Tomislav Friščić
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| |
Collapse
|
27
|
Zábranský M, Alves PC, Bravo C, Duarte MT, André V. From pipemidic acid molecular salts to metal complexes and BioMOFs using mechanochemistry. CrystEngComm 2021. [DOI: 10.1039/d0ce01533d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mechanochemistry has proven to be an excellent sustainable, efficient and fast tool for the discovery of new crystal forms of old drugs.
Collapse
Affiliation(s)
- Martin Zábranský
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague, Czech Republic
| | - Paula C. Alves
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Av. Rovisco Pais, 1049-003 Lisboa, Portugal
| | - Catarina Bravo
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Av. Rovisco Pais, 1049-003 Lisboa, Portugal
| | - M. Teresa Duarte
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Vânia André
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Av. Rovisco Pais, 1049-003 Lisboa, Portugal
| |
Collapse
|