1
|
Salazar Marcano DE, Savić ND, Declerck K, Abdelhameed SAM, Parac-Vogt TN. Reactivity of metal-oxo clusters towards biomolecules: from discrete polyoxometalates to metal-organic frameworks. Chem Soc Rev 2024; 53:84-136. [PMID: 38015569 DOI: 10.1039/d3cs00195d] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Metal-oxo clusters hold great potential in several fields such as catalysis, materials science, energy storage, medicine, and biotechnology. These nanoclusters of transition metals with oxygen-based ligands have also shown promising reactivity towards several classes of biomolecules, including proteins, nucleic acids, nucleotides, sugars, and lipids. This reactivity can be leveraged to address some of the most pressing challenges we face today, from fighting various diseases, such as cancer and viral infections, to the development of sustainable and environmentally friendly energy sources. For instance, metal-oxo clusters and related materials have been shown to be effective catalysts for biomass conversion into renewable fuels and platform chemicals. Furthermore, their reactivity towards biomolecules has also attracted interest in the development of inorganic drugs and bioanalytical tools. Additionally, the structural versatility of metal-oxo clusters allows for the efficiency and selectivity of the biomolecular reactions they promote to be readily tuned, thereby providing a pathway towards reaction optimization. The properties of the catalyst can also be improved through incorporation into solid supports or by linking metal-oxo clusters together to form Metal-Organic Frameworks (MOFs), which have been demonstrated to be powerful heterogeneous catalysts. Therefore, this review aims to provide a comprehensive and critical analysis of the state of the art on biomolecular transformations promoted by metal-oxo clusters and their applications, with a particular focus on structure-activity relationships.
Collapse
Affiliation(s)
| | - Nada D Savić
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Kilian Declerck
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | |
Collapse
|
2
|
Machihara K, Oki S, Maejima Y, Kageyama S, Onda A, Koseki Y, Imai Y, Namba T. Restoration of mitochondrial function by Spirulina polysaccharide via upregulated SOD2 in aging fibroblasts. iScience 2023; 26:107113. [PMID: 37416477 PMCID: PMC10319841 DOI: 10.1016/j.isci.2023.107113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/21/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
Reactive oxygen species (ROS), such as superoxide, are crucial factors involved in the stimulation of cellular aging. Mitochondria, which are important organelles responsible for various metabolic processes in cells, produce ROS. These ROS impair mitochondrial function, thereby accelerating aging-related cellular dysfunction. Herein, we demonstrated that the Spirulina polysaccharide complex (SPC) restores mitochondrial function and collagen production by scavenging superoxide via the upregulation of superoxide dismutase 2 (SOD2) in aging fibroblasts. We observed that SOD2 expression was linked to inflammatory pathways; however, SPC did not upregulate the expression of most inflammatory cytokines produced as a result of induction of LPS in aging fibroblasts, indicating that SPC induces SOD2 without activation of inflammatory pathways. Furthermore, SPC stimulated endoplasmic reticulum (ER) protein folding by upregulating ER chaperones expression. Thus, SPC is proposed to be an antiaging material that rejuvenates aging fibroblasts by increasing their antioxidant potential via the upregulation of SOD2.
Collapse
Affiliation(s)
- Kayo Machihara
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Kochi 783-8505, Japan
| | - Shoma Oki
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan
| | - Yuka Maejima
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan
| | - Sou Kageyama
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan
| | - Ayumu Onda
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Kochi 783-8505, Japan
| | - Yurino Koseki
- Health Care Technical G, Chiba Plants, DIC Corporation, Ichihara, Chiba 290-8585, Japan
| | - Yasuyuki Imai
- Health Care Technical G, Chiba Plants, DIC Corporation, Ichihara, Chiba 290-8585, Japan
| | - Takushi Namba
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Kochi 783-8505, Japan
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan
| |
Collapse
|
3
|
Wang W, Yang D, Mou L, Wu M, Wang Y, Cai W, Tan F. Preparation of the porous carbon-based solid acid from starch for efficient degradation of chitosan to D-glucosamine. Int J Biol Macromol 2022; 209:1629-1637. [PMID: 35447270 DOI: 10.1016/j.ijbiomac.2022.04.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/11/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
Effective degradation of chitosan to D-glucosamine is considered to make a great contribution for the development of the medical industry. To address this issue, a porous carbon-based solid acid catalyst (PCSA) functionalized with -OH, -COOH and -SO3H groups was successfully prepared. Typically, the physicochemical properties of PCSA were deeply determined by a series of characterization technique including FT-IR, TGA, RM, NH3-TPD, SEM and Element Analysis. Moreover, the catalytic performances of PCSA towards to D-glucosamine production from chitosan were evaluated. In particular, the effects of catalyst acid density, ratio of acidic groups, chitosan concentration, reaction temperature, reaction time and catalyst dosage on the yield of D-glucosamine were investigated in detail. Interestingly, the experimental results indicated that a yield of D-glucosamine as high as 90.5% was achieved, and no obvious deactivation occurred even after six consecutive cycles. In light of the advantages of superior activity/recyclability and low cost, the starch-derived solid acid developed in this work might possess the broad industrial application prospects.
Collapse
Affiliation(s)
- Wenfeng Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Di Yang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Lu Mou
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Wu
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yuanhao Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Weijie Cai
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fengzhi Tan
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
4
|
Le NMN, Le-Vinh B, Friedl JD, Jalil A, Kali G, Bernkop-Schnürch A. Polyaminated pullulan, a new biodegradable and cationic pullulan derivative for mucosal drug delivery. Carbohydr Polym 2022; 282:119143. [DOI: 10.1016/j.carbpol.2022.119143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 11/02/2022]
|
5
|
Mohammadi M, Ghorbani-Choghamarani A. Synthesis and characterization of novel hercynite@sulfuric acid and its catalytic applications in the synthesis of polyhydroquinolines and 2,3-dihydroquinazolin-4(1 H)-ones. RSC Adv 2022; 12:2770-2787. [PMID: 35425328 PMCID: PMC8979139 DOI: 10.1039/d1ra07381h] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Herein, we report the synthesis of hercynite@sulfuric acid as a novel nanomagnetic solid acid catalyst, containing the sulfuric acid catalytic sites on the surface of hercynite MNPs as the catalytic support. The as-synthesized nanocomposite was meticulously characterized using a wide range of physicochemical techniques; including, FT-IR, XRD, EDX, X-ray-mapping, SEM and VSM analysis. The catalytic activity of this nanomagnetic material was considered for the synthesis of the diversely substituted polyhydroquinolines and 2,3-dihydroquinazolin-4(1H)-ones under solvent free conditions and also cyclocondensation reactions in ethanol, respectively affording good to excellent yields. Moreover, it is worth mentioning that the heterogeneity of the catalyst was measured through its excellent reusability and hot-filtration test.
Collapse
Affiliation(s)
- Masoud Mohammadi
- Department of Chemistry, Faculty of Science, Ilam University P.O. Box 69315516 Ilam Iran
| | - Arash Ghorbani-Choghamarani
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| |
Collapse
|
6
|
Khongchamnan P, Wanmolee W, Laosiripojana N, Champreda V, Suriyachai N, Kreetachat T, Sakulthaew C, Chokejaroenrat C, Imman S. Solvothermal-Based Lignin Fractionation From Corn Stover: Process Optimization and Product Characteristics. Front Chem 2021; 9:697237. [PMID: 34422761 PMCID: PMC8374146 DOI: 10.3389/fchem.2021.697237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Fractionation of lignocellulosic is a fundamental step in the production of value-added biobased products. This work proposes an initiative to efficiently extract lignin from the corn stover using a single-step solvothermal fractionation in the presence of an acid promoter (H2SO4). The organic solvent mixture used consists of ethyl acetate, ethanol, and water at a ratio of 30: 25:45 (v/v), respectively. H2SO4 was utilized as a promoter to improve the performance and selectivity of lignin removal from the solid phase and to increase the amount of recovered lignin in the organic phase. The optimal conditions for this extraction, based on response surface methodology (RSM), are a temperature of 180°C maintained for 49.1 min at an H2SO4 concentration of 0.08 M. The optimal conditions show an efficient reaction with 98.0% cellulose yield and 75.0% lignin removal corresponding to 72.9% lignin recovery. In addition, the extracted lignin fractions, chemical composition, and structural features were investigated using Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, and two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance spectroscopy (2D-HSQC NMR). The results indicate that the recovered lignin primarily contains a β-O-4 linking motif based on 2D-HSQC spectra. In addition, new C-C inter-unit linkages (i.e., β-β, and β-5) are not formed in the recovered lignin during H2SO4-catalyzed solvothermal pretreatment. This work facilitates effective valorization of lignin into value-added chemicals and fuels.
Collapse
Affiliation(s)
| | - Wanwitoo Wanmolee
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Navadol Laosiripojana
- The Joint Graduate School for Energy and Environment (JGSEE), King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- BIOTEC–JGSEE Integrative Biorefinery Laboratory, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Verawat Champreda
- BIOTEC–JGSEE Integrative Biorefinery Laboratory, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Nopparat Suriyachai
- BIOTEC–JGSEE Integrative Biorefinery Laboratory, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
- Intregated Biorefinery Excellent Center (IBC), School of Energy and Environment, University of Phayao, Muang Phayao, Thailand
| | - Torpong Kreetachat
- School of Energy and Environment, University of Phayao, Muang Phayao, Thailand
- Intregated Biorefinery Excellent Center (IBC), School of Energy and Environment, University of Phayao, Muang Phayao, Thailand
| | - Chainarong Sakulthaew
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Chanat Chokejaroenrat
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, Thailand
| | - Saksit Imman
- School of Energy and Environment, University of Phayao, Muang Phayao, Thailand
- Intregated Biorefinery Excellent Center (IBC), School of Energy and Environment, University of Phayao, Muang Phayao, Thailand
| |
Collapse
|