1
|
Shen X, Hong G, Wang L. Recent advances in green multi-component reactions for heterocyclic compound construction. Org Biomol Chem 2025; 23:2059-2078. [PMID: 39887261 DOI: 10.1039/d4ob01822b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Multi-component reactions (MCRs) are processes in which three or more reactants are introduced into one pot to obtain the final product with high atom efficiency, and in recent years, these have become a key strategy for advancing more sustainable processes in modern synthetic communities and the pharmaceutical industry. Meanwhile, minimizing the use of solvents, catalysts, time, reagents, and waste is essential during green chemical synthesis to reduce cost and environmental impact. Heterocycles are ubiquitous and have thus prompted the development of numerous methods for their synthesis. Among various strategies, MCRs represent one of the most promising routes for the synthesis of heterocyclic moieties such as quinolines, quinazolines, pyrimidines and imidazoles, which are widely recognized in nature and clinical evaluation. To promote greener syntheses, a significant body of literature detailing the synthesis of these biologically important compounds via environmentally friendly MCRs has emerged. This review focused on the recent advances in the green approach to preparing heterocyclic compounds via MCRs. These green approaches included photoredox catalysis, electrochemical activation, catalyst-free methods, and the use of water as the sole green solvent, reported between 2018 and 2024, highlighting their strengths and limitations. The synthesis of different types of heterocycles via green MCRs was covered. The substrate scope, reaction conditions, yields and mechanisms were also examined and discussed.
Collapse
Affiliation(s)
- Xinling Shen
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Gang Hong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Limin Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| |
Collapse
|
2
|
Shukla RK, Yadav RK, Gole VL, Singhal R, Shahin R, Mishra S, Singh S, Sharma K, Baeg JO, El-Hiti GA, Kumar Yadav K, Kumar Gupta N. Transforming Pharmaceutical Synthesis with Se in-E-B Nanocomposite Photocatalyst through 1,4-NAD(P)H Cofactor Regeneration and C-N Bond Activation. Chem Biodivers 2024; 21:e202400329. [PMID: 38590163 DOI: 10.1002/cbdv.202400329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
The need for sunlight chemical renewal and contemporary organic transformation has fostered the advancement of environmentally friendly photocatalytic techniques. For the first time, we report on the novel crafting of a bright future with selenium-infused Eosin-B (Sein-E-B) nanocomposite photocatalysts in this work. The Sein-E-B nanocomposite materials were created using a hydrothermal process for solar chemical regeneration and organic transformation under visible light. The synthesized samples were subjected to UV-DRS-visible spectroscopy, FT-IR, SEM, EDX, EIS and XRD analysis. The energy band gap of the Sein-E-B nanocomposite photocatalyst was measured using UV-DRS, and the result was around 2.06 eV. to investigate the generated Sein-E-B catalytic activity as a nanocomposite for 1,4-NADH/NADPH re-formation and C-N bond activation. This novel photocatalyst offers a promising alternative for the regeneration of solar chemicals and C-N bond creation between pyrrole and aryl halides.
Collapse
Affiliation(s)
- Ravindra K Shukla
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., 273010, India
| | - Rajesh K Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., 273010, India
| | - Vitthal L Gole
- Department of Chemical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P., India
| | - Rajat Singhal
- Centre for Sustainable Technologies, Indian Institute of Science, Gulmohar Marg, Mathikere, Bengaluru, 560012, India
| | - Rehana Shahin
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., 273010, India
| | - Shaifali Mishra
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., 273010, India
| | - Satyam Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., 273010, India
| | - Kanchan Sharma
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., 273010, India
| | - Jin-Ook Baeg
- Artificial Photosynthesis Research group, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Gamal A El-Hiti
- Department of Optometry, College of Applied, Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Navneet Kumar Gupta
- Centre for Sustainable Technologies, Indian Institute of Science, Gulmohar Marg, Mathikere, Bengaluru, 560012, India
| |
Collapse
|
3
|
K P S, Russelisaac Premakumari S, Cho KB, Lee A. Hydrosulfonylation of Alkynes for Stereodivergent Synthesis of Vinyl Sulfones: Synthetic Strategy and Mechanistic Insights. J Am Chem Soc 2024; 146:14816-14828. [PMID: 38752975 DOI: 10.1021/jacs.4c03372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Direct synthesis of thermodynamically less favorable (Z)-vinyl sulfones presents a notable challenge in organic synthesis. In addition, the development of a stereodivergent synthesis for (E)- and (Z)-vinyl sulfones is crucial but remains elusive. In this study, we present a hydrosulfonylation of aryl-substituted alkynes, achieving a stereodivergent synthesis of (E)- and (Z)-vinyl sulfones by leveraging both thermodynamic and kinetic controls. Notably, the synthesis of challenging (Z)-vinyl sulfones was achieved through a kinetically controlled process without the need for a catalyst. To synthesize (E)-vinyl sulfones, unconventional visible light-mediated isomerization was employed as a means of facilitating the transition to the thermodynamically favored form. The present study encompasses a comprehensive experimental and computational investigation, which provides valuable insights into the reaction mechanism. This investigation reveals two plausible isomerization pathways: a novel double spin-flip mechanism and a hydrogen atom transfer process in the presence of eosin Y. This study not only advances our understanding of isomerization mechanisms beyond conventional energy-transfer routes but also offers a robust and switchable strategy for synthesizing (E)- and (Z)-vinyl sulfones, thereby providing a versatile avenue for the creation of valuable compounds in the fields of organic synthesis and medicinal chemistry.
Collapse
Affiliation(s)
- Sujith K P
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Steiny Russelisaac Premakumari
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kyung-Bin Cho
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Anna Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
4
|
Tali JA, Kumar G, Sharma BK, Rasool Y, Sharma Y, Shankar R. Synthesis and site selective C-H functionalization of imidazo-[1,2- a]pyridines. Org Biomol Chem 2023; 21:7267-7289. [PMID: 37655687 DOI: 10.1039/d3ob00849e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Imidazo[1,2-a]pyridine has attracted much interest in drug development because of its potent medicinal properties, therefore the discovery of novel methods for its synthesis and functionalization continues to be an exciting area of research. Although transition metal catalysis has fuelled the most significant developments, extremely beneficial metal-free approaches have also been identified. Even though pertinent reviews focused on imidazo[1,2-a]pyridine synthesis, properties (physicochemical and medicinal), and functionalization at the C3 position have been published, none of these reviews has focused on the outcomes obtained in the field of global ring functionalization. We wish here to describe a brief synthesis and an overview of all the functionalization reactions at each carbon atom, viz, C2, C3, C5, C6, C7 and C8 of this scaffold, divided into sections based on site-selectivity and the type of functionalization methods used.
Collapse
Affiliation(s)
- Javeed Ahmad Tali
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Gulshan Kumar
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Bhupesh Kumar Sharma
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Younis Rasool
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Yashika Sharma
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Ravi Shankar
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
5
|
Kushwaha AK, Maury SK, Kamal A, Singh HK, Pandey S, Singh S. Visible-light-absorbing C-N cross-coupling for the synthesis of hydrazones involving C(sp 2)-H/C(sp 3)-H functionalization. Chem Commun (Camb) 2023; 59:4075-4078. [PMID: 36938640 DOI: 10.1039/d2cc07001d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
An efficient C-N cross-coupling approach for the synthesis of hydrazones was developed through C(sp2)-H and C(sp3)-H functionalization of indole and methylarene under visible light irradiation using photocatalyst eosin Y, ethanol:water as a green solvent and atmospheric air as an oxidant. With the aid of eosin Y, the C-H bonds of indole and methylarenes were activated followed by coupling with arylhydrazines. The procedure was applied to a wide variety of substrates with good functional group compatibility, offering a creative way to make hydrazones from inexpensive and easily accessible raw materials. The absence of metals, low cost, environmental friendliness, green solvent, non-toxicity, ease of handling, and utilization of renewable energy sources like visible light are some of this method's primary advantages.
Collapse
Affiliation(s)
- Ambuj Kumar Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi - 221 005, UP, India.
| | - Suresh Kumar Maury
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi - 221 005, UP, India.
| | - Arsala Kamal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi - 221 005, UP, India.
| | - Himanshu Kumar Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi - 221 005, UP, India.
| | - Shikha Pandey
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi - 221 005, UP, India.
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi - 221 005, UP, India.
| |
Collapse
|
6
|
Russo C, Brunelli F, Cesare Tron G, Giustiniano M. Isocyanide-Based Multicomponent Reactions Promoted by Visible Light Photoredox Catalysis. Chemistry 2023; 29:e202203150. [PMID: 36458647 DOI: 10.1002/chem.202203150] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
Isocyanide-based multicomponent reactions claim a one century-old history of flourishing developments. On the other hand, the enormous impact of recent progresses in visible light photocatalysis has boosted the identification of new straightforward and green approaches to both new and known chemical entities. In this context, the application of visible light photocatalytic conditions to multicomponent processes has been promoting key stimulating advancements. Spanning from radical-polar crossover pathways, to photoinduced and self-catalyzed transformations, to reactions involving the generation of imidoyl radical species, the present literature analysis would provide a general and critical overview about the potentialities and challenges of exploiting isocyanides in visible light photocatalytic multicomponent reactions.
Collapse
Affiliation(s)
- Camilla Russo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Francesca Brunelli
- Department of Drug Science, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Gian Cesare Tron
- Department of Drug Science, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
7
|
Das R, Kundu T, Basumatary J. Visible light mediated organocatalytic dehydrogenative aza-coupling of 1,3-diones using aryldiazonium salts. RSC Adv 2023; 13:3147-3154. [PMID: 36756411 PMCID: PMC9853514 DOI: 10.1039/d2ra07807d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
An efficient protocol for diazenylation of 1,3-diones under photoredox conditions is presented herein. C-N bond forming Csp3 -H functionalization of cyclic and alkyl diones by unstable aryl diazenyl radicals is achieved through reaction with aryldiazonium tetrafluoroborates by organocatalysts under visible light irradiation. The reaction has wide substrate scope, gives excellent yields, and is also efficient in water as a green solvent. This method provides an easy access to aryldiazenyl derivatives that are useful key starting materials for the synthesis of aza heterocycles as well as potential pharmacophores.
Collapse
Affiliation(s)
- Ramanand Das
- Department of Chemistry, National Institute of Technology Sikkim Ravangla, South Sikkim PIN 737139 India
| | - Taraknath Kundu
- Department of Chemistry, National Institute of Technology Sikkim Ravangla, South Sikkim PIN 737139 India
| | - Joneswar Basumatary
- Department of Chemistry, Sikkim University Tadong, Daragaon, East Sikkim Gangtok PIN 737102 India
| |
Collapse
|
8
|
Yin YY, Liu XR, Jin JH, Li ZM, Shen YM, Zhou J, Peng X. Visible-light induced three-component reaction for α-aminobutyronitrile synthesis by C-C bond formation using quantum dots as photocatalysts. Org Biomol Chem 2023; 21:359-364. [PMID: 36503936 DOI: 10.1039/d2ob01797k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We describe a three-component reaction of malononitrile, benzaldehyde and N,N-dimethylaniline using aluminium doped CdSeS/CdZnSeS(Al)/ZnS quantum dots (QDs) as visible light catalysts to synthesize α-aminobutyrilitriles at room temperature and under mild conditions. The reactions exhibit high functional group tolerance, and the well dispersed quantum dot catalysts are highly efficient with a turnover number (TON) greater than 1.1 × 103 and can be recycled at least three times without significant loss of catalytic activity.
Collapse
Affiliation(s)
- Yu-Yun Yin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| | - Xiao-Rui Liu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| | - Jia-Hui Jin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| | - Zhi-Ming Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| | - Yong-Miao Shen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China. .,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310027, PR China
| | - Jianhai Zhou
- Najing Technology Corporation Ltd, 428 Qiuyi Road Building No. 3, Binjiang District, Hangzhou, Zhejiang, 310052, People's Republic of China.
| | - Xiaogang Peng
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
9
|
Li R, Landfester K, Ferguson CTJ. Temperature- and pH-Responsive Polymeric Photocatalysts for Enhanced Control and Recovery. Angew Chem Int Ed Engl 2022; 61:e202211132. [PMID: 36112056 PMCID: PMC10099588 DOI: 10.1002/anie.202211132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 12/14/2022]
Abstract
The emergence of heterogeneous photocatalysis has facilitated redox reactions with high efficiency, without compromising the recyclability of the photocatalyst. Recently, stimuli-responsive heterogeneous photocatalytic materials have emerged as a powerful synthetic tool, with simple and rapid recovery, as well as an enhanced dynamic control over reactions. Stimuli-responsive polymers are often inexpensive and easy to produce. They can be switched from an active "on" state to an inert "off" state in response to external stimuli, allowing the production of photocatalyst with adaptability, recyclability, and orthogonal control on different chemical reactions. Despite this versatility, the application of artificial smart material in the field of heterogeneous photocatalysis has not yet been maximized. In this Minireview, we will examine the recent developments of this emerging class of stimuli-responsive heterogeneous photocatalytic systems. We will discuss the synthesis route of appending photoactive components into different triggerable systems and, in particular, the controlled activation and recovery of the materials.
Collapse
Affiliation(s)
- Rong Li
- Max Planck Institute for Polymer ResearchMainzGermany
| | | | - Calum T. J. Ferguson
- Department School of ChemistryUniversity of BirminghamBirminghamUK
- Max Planck Institute for Polymer ResearchMainzGermany
| |
Collapse
|
10
|
Maury SK, Kushwaha AK, Kamal A, Singh HK, singh S. Visible light triggered synthesis of spiro[indoline-3,4′-quinoline] via oxidative coupling of indole with enaminone and malononitrile. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Yadav P, Varma AA, A J P, Gopinath P. Photoredox mediated multicomponent reactions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pooja Yadav
- Indian Institute of Science Education and Research Tirupati Chemistry INDIA
| | - A Anagha Varma
- Indian Institute of Science Education and Research Tirupati Chemistry INDIA
| | - Punnya A J
- Indian Institute of Science Education and Research Tirupati Chemistry INDIA
| | - Purushothaman Gopinath
- Indian Institute of Science Education and Research Tirupati Chemistry Karkambadi Road 517507 Tirupati INDIA
| |
Collapse
|
12
|
Kamal A, Singh HK, Maury SK, Kumari S, Kushwaha AK, Srivastava V, Singh S. Visible Light-Driven Synthesis of Amine–Sulfonate Salt Derivatives: A Step towards Green Approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Tran C, Hamze A. Recent Developments in the Photochemical Synthesis of Functionalized Imidazopyridines. Molecules 2022; 27:molecules27113461. [PMID: 35684399 PMCID: PMC9182178 DOI: 10.3390/molecules27113461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
Imidazopyridines constitute one of the most important scaffolds in medicinal chemistry, as their skeleton could be found in a myriad of biologically active molecules. Although numerous strategies were elaborated for imidazopyridine preparation in the 2010s, novel eco-compatible synthetic approaches have emerged, conscious of climate change concerns. In this framework, photochemical methods have been promoted to conceive this heterocyclic motif over the last decade. This review covers the recently published works on synthesizing highly functionalized imidazopyridines by light induction.
Collapse
|
14
|
Burykina JV, Kobelev AD, Shlapakov NS, Kostyukovich AY, Fakhrutdinov AN, König B, Ananikov VP. Intermolecular Photocatalytic Chemo‐, Stereo‐ and Regioselective Thiol–Yne–Ene Coupling Reaction. Angew Chem Int Ed Engl 2022; 61:e202116888. [PMID: 35147284 PMCID: PMC9313788 DOI: 10.1002/anie.202116888] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 11/11/2022]
Abstract
The first example of an intermolecular thiol–yne–ene coupling reaction is reported for the one‐pot construction of C−S and C−C bonds. Thiol–yne–ene coupling opens a new dimension in building molecular complexity to access densely functionalized products. The employment of Eosin Y/DBU/MeOH photocatalytic system suppresses hydrogen atom transfer (HAT) and associative reductant upconversion (via C−S three‐electron σ‐bond formation). Investigation of the reaction mechanism by combining online ESI‐UHRMS, EPR spectroscopy, isotope labeling, determination of quantum yield, cyclic voltammetry, Stern–Volmer measurements and computational modeling revealed a unique photoredox cycle with four radical‐involving stages. As a result, previously unavailable products of the thiol–yne–ene reaction were obtained in good yields with high selectivity. They can serve as stable precursors for synthesizing synthetically demanding activated 1,3‐dienes.
Collapse
Affiliation(s)
- Julia V. Burykina
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect, 47 Moscow 119991 Russia
| | - Andrey D. Kobelev
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect, 47 Moscow 119991 Russia
- Lomonosov Moscow State University Leninskie Gory GSP-1, 1-3 Moscow 119991 Russia
| | - Nikita S. Shlapakov
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect, 47 Moscow 119991 Russia
- Institut für Organische Chemie Universität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| | - Alexander Yu. Kostyukovich
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect, 47 Moscow 119991 Russia
| | - Artem N. Fakhrutdinov
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect, 47 Moscow 119991 Russia
| | - Burkhard König
- Institut für Organische Chemie Universität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect, 47 Moscow 119991 Russia
- Lomonosov Moscow State University Leninskie Gory GSP-1, 1-3 Moscow 119991 Russia
| |
Collapse
|
15
|
Recent advances of visible-light photocatalysis in the functionalization of organic compounds. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100488] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Burykina JV, Kobelev AD, Shlapakov NS, Kostyukovich AY, Fakhrutdinov AN, König B, Ananikov VP. Intermolecular Photocatalytic Chemo‐, Stereo‐ and Regioselective Thiol‐yne‐ene Coupling Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julia. V. Burykina
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Catalysis RUSSIAN FEDERATION
| | - Andrey D. Kobelev
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Catalysis RUSSIAN FEDERATION
| | - Nikita S. Shlapakov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Catalysis RUSSIAN FEDERATION
| | - Alexander Yu. Kostyukovich
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Catalysis RUSSIAN FEDERATION
| | - Artem N. Fakhrutdinov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Catalysis RUSSIAN FEDERATION
| | - Burkhard König
- University of Regensburg: Universitat Regensburg Organic GERMANY
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospekt 47 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
17
|
Liu J, Zuo S, Huang J, Zhang F, Zuo A. Synthesis of unsymmetrical 1,3-substituted-1,3-dihydro-benzimidazolones via copper-catalyzed C–N coupling under visible light. NEW J CHEM 2022. [DOI: 10.1039/d2nj02054h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although photoinduced copper catalysis for carbon–nitrogen (C–N) amine bond formation with alkyl/aryl halides has been developed, the potential of copper photocatalysis for the synthesis of 1,3-substituted benzimidazolones remains mostly unexplored.
Collapse
Affiliation(s)
- Jianjun Liu
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100124, China
| | - Shengli Zuo
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100124, China
| | - Jieying Huang
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100124, China
| | - Fan Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100124, China
| | - Ang Zuo
- Department of Pharmaceutical Sciences, College of Pharmacy and UICentre (Drug Discovery at UIC), University of Illinois at Chicago, Chicago, Illinois 60612, USA
- SynChem, Inc., 1400 Chase Avenue, Elk Grove Village, Illinois 60007, USA
| |
Collapse
|
18
|
He Y, Huang T, Shi X, Chen Y, Wu Q. Recent Advances in Photocatalytic Reactions with Isocyanides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Singh HK, Kamal A, Kumari S, Maury SK, Kushwaha AK, Srivastava V, Singh S. Visible‐Light‐Promoted Synthesis of Fusesd Imidazoheterocycle by Eosin Y under Metal‐Free and Solvent‐Free Conditions. ChemistrySelect 2021. [DOI: 10.1002/slct.202103548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Himanshu Kumar Singh
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 Uttar Pradesh India
| | - Arsala Kamal
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 Uttar Pradesh India
| | - Savita Kumari
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 Uttar Pradesh India
| | - Suresh Kumar Maury
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 Uttar Pradesh India
| | - Ambuj Kumar Kushwaha
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 Uttar Pradesh India
| | - Vandana Srivastava
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 Uttar Pradesh India
| | - Sundaram Singh
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 Uttar Pradesh India
| |
Collapse
|
20
|
Xu GQ, Xu PF. Visible light organic photoredox catalytic cascade reactions. Chem Commun (Camb) 2021; 57:12914-12935. [PMID: 34782893 DOI: 10.1039/d1cc04883j] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the past years, impressive progress has been made in the development of organic photoredox catalytic cascade reactions without the participation of expensive and toxic transition metals under visible light irradiation. These transformations highly depend on the in situ generation of various radical species in the photoredox catalytic cycles. Numerous chemically and biomedically valuable building blocks have been synthesized through this efficient and sustainable protocol. In this review, we highlight the recent progress in this blooming area by presenting a series of new catalytic cascade reactions mediated by organic photoredox catalysts and describe their mechanisms and applications which have appeared in the recent literature.
Collapse
Affiliation(s)
- Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. .,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
21
|
Tong J, Zhan Y, Li J, Liu P, Sun P. One‐Pot Synthesis of C3‐Alkylated Imidazopyridines from α‐Bromocarbonyls under Photoredox Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jinwen Tong
- School of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| | - Yanling Zhan
- School of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| | - Jingyu Li
- School of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| | - Ping Liu
- School of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| | - Peipei Sun
- School of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| |
Collapse
|