1
|
Wang N, Cao X, Sun D, Li X, Tian G, Feng J, Wei P. A polymer dot-based NADH-sensitive electrochemiluminescence biosensor for analysis of metabolites in serum. Talanta 2024; 267:125149. [PMID: 37690417 DOI: 10.1016/j.talanta.2023.125149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Nicotinamide adenine dinucleotide (NADH) plays a pivotal role in metabolism. Convenient detection of NADH and its related metabolites has the pursuit of point-of-care and clinical analysis. Here, we propose a polymer dots (Pdots)-based NADH-sensitive electrochemiluminescence (ECL) biosensor for detection of NADH and three metabolites. Pdots acted as the efficient ECL emitters without additional modification to construct this biosensor. Specially, NADH both acted as the final detection target and at the same time as the bio-coreactants to sensitively influence the ECL intensities, in which NADH was generated or consumed in the presence of the target analyte and their specific enzyme. For glucose and lactic acid detection, NAD+ was reduced to NADH to generate an enhanced ECL signal. Conversely, for pyruvate detection, NADH was consumed to further decrease the ECL. The designed Pdots-based ECL biosensor showed wide detection ranges, high selectivity and low limits of detection of 4.6 μM, 0.7 μM and 0.5 μM for the analysis of three analytes, respectively. This strategy was successfully applied in quantifying the concentrations of glucose, lactic acid and pyruvate in human serum, which also has the potential to be implemented as a powerful and fast tool for ECL sensing of NADH and other related metabolites for point-of-care use and disease monitoring.
Collapse
Affiliation(s)
- Ningning Wang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
| | - Xuewei Cao
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China; Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Daxi Sun
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
| | - Xinyu Li
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
| | - Geng Tian
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China.
| | - Jiankai Feng
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China.
| | - Pengfei Wei
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
2
|
Wijayanti SD, Tsvik L, Haltrich D. Recent Advances in Electrochemical Enzyme-Based Biosensors for Food and Beverage Analysis. Foods 2023; 12:3355. [PMID: 37761066 PMCID: PMC10529900 DOI: 10.3390/foods12183355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Food analysis and control are crucial aspects in food research and production in order to ensure quality and safety of food products. Electrochemical biosensors based on enzymes as the bioreceptors are emerging as promising tools for food analysis because of their high selectivity and sensitivity, short analysis time, and high-cost effectiveness in comparison to conventional methods. This review provides the readers with an overview of various electrochemical enzyme-based biosensors in food analysis, focusing on enzymes used for different applications in the analysis of sugars, alcohols, amino acids and amines, and organic acids, as well as mycotoxins and chemical contaminants. In addition, strategies to improve the performance of enzyme-based biosensors that have been reported over the last five years will be discussed. The challenges and future outlooks for the food sector are also presented.
Collapse
Affiliation(s)
- Sudarma Dita Wijayanti
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
- Department of Food Science and Biotechnology, Brawijaya University, Malang 65145, Indonesia
| | - Lidiia Tsvik
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
| | - Dietmar Haltrich
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
| |
Collapse
|
3
|
Dong H, Liu X, Gan L, Fan D, Sun X, Zhang Z, Wu P. Nucleic acid aptamer-based biosensors and their application in thrombin analysis. Bioanalysis 2023. [PMID: 37326345 DOI: 10.4155/bio-2023-0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Thrombin is a multifunctional serine protease that plays an important role in coagulation and anticoagulation processes. Aptamers have been widely applied in biosensors due to their high specificity, low cost and good biocompatibility. This review summarizes recent advances in thrombin quantification using aptamer-based biosensors. The primary focus is optical sensors and electrochemical sensors, along with their applications in thrombin analysis and disease diagnosis.
Collapse
Affiliation(s)
- Hang Dong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lu Gan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xinjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
4
|
Novel thermal synthesis of ternary Cu-CuO-Cu2O nanospheres supported on reduced graphene oxide for the sensitive non-enzymatic electrochemical detection of pyruvic acid as a cancer biomarker. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
5
|
Ultrasensitive electrochemical detection of hepatitis b virus surface antigen based on hybrid nanomaterials. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Yang L, Wu N, Bai R, Chen M, Dong W, Zhou J, Jiang M. A novel strategy for the detection of pyruvate in fermentation processes based on well-distributed enzyme-inorganic hybrid nanoflowers on thiol graphene modified gold electrodes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Rajarathinam T, Thirumalai D, Kwon M, Lee S, Jayaraman S, Paik HJ, Lee J, Chang SC. Screen-printed carbon electrode modified with de-bundled single-walled carbon nanotubes for voltammetric determination of norepinephrine in ex vivo rat tissue. Bioelectrochemistry 2022; 146:108155. [DOI: 10.1016/j.bioelechem.2022.108155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/01/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
|
8
|
Leote RJB, Ghica ME, Brett CMA. Pyruvate Oxidase Biosensors Based on Glassy Carbon Electrodes Modified with Carbon Nanotubes and Poly(Neutral Red) Synthesized in Ethaline Deep Eutectic Solvent. ELECTROANAL 2022. [DOI: 10.1002/elan.202100164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ricardo J. B. Leote
- University of Coimbra CEMMPRE Department of Chemistry 3004-535 Coimbra Portugal
- National Institute of Materials Physics Atomistilor Str. 405 A 077125 Magurele Romania
| | - Mariana E. Ghica
- University of Coimbra CEMMPRE Department of Chemistry 3004-535 Coimbra Portugal
- University of Coimbra CIEPQPF Department of Chemical Engineering 3030-790 Coimbra Portugal
| | | |
Collapse
|
9
|
Park K. Impedance Technique-Based Label-Free Electrochemical Aptasensor for Thrombin Using Single-Walled Carbon Nanotubes-Casted Screen-Printed Carbon Electrode. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22072699. [PMID: 35408313 PMCID: PMC9002654 DOI: 10.3390/s22072699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 05/28/2023]
Abstract
An impedance technique-based aptasensor for the detection of thrombin was developed using a single-walled carbon nanotube (SWCNT)-modified screen-printed carbon electrode (SPCE). In this work, a thrombin-binding aptamer (TBA) as probe was used for the determination of thrombin, and that was immobilized on SWCNT through π-π interaction. In the presence of thrombin, the TBA on SWCNT binds with target thrombin, and the amount of TBA on the SWCNT surface decreases. The detachment of TBA from SWCNT will be affected by the concentration of thrombin and the remaining TBA on the SWCNT surface can be monitored by electrochemical methods. The TBA-modified SWCNT/SPCE sensing layer was characterized by cyclic voltammetry (CV). For the measurement of thrombin, the change in charge-transfer resistance (Rct) of the sensing interface was investigated using electrochemical impedance spectroscopy (EIS) with a target thrombin and [Fe(CN)6]3- as redox maker. Upon incubation with thrombin, a decrease of Rct change was observed due to the decrease in the repulsive interaction between the redox marker and the electrode surface without any label. A plot of Rct changes vs. the logarithm of thrombin concentration provides the linear detection ranges from 0.1 nM to 1 µM, with a ~0.02 nM detection limit.
Collapse
Affiliation(s)
- Kyungsoon Park
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
10
|
da Silva RTP, Ribeiro de Barros H, Sandrini DMF, Córdoba de Torresi SI. Stimuli-Responsive Regulation of Biocatalysis through Metallic Nanoparticle Interaction. Bioconjug Chem 2022; 33:53-66. [PMID: 34914373 DOI: 10.1021/acs.bioconjchem.1c00515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The remote control of biocatalytic processes in an extracellular medium is an exciting idea to deliver innovative solutions in the biocatalysis field. With this purpose, metallic nanoparticles (NPs) are great candidates, as their inherent thermal, electric, magnetic, and plasmonic properties can readily be manipulated upon external stimuli. Exploring the unique NP properties beyond an anchoring platform for enzymes brings up the opportunity to extend the efficiency of biocatalysts and modulate their activity through triggered events. In this review, we discuss a set of external stimuli, such as light, electricity, magnetism, and temperature, as tools for the regulation of nanobiocatalysis, including the challenges and perspectives regarding their use. In addition, we elaborate on the use of combined stimuli that create a more refined framework in terms of a multiresponsive system. Finally, we envision this review might instigate researchers in this field of study with a set of promising opportunities in the near future.
Collapse
Affiliation(s)
- Rafael T P da Silva
- Instituto de Química, Universidade de São Paulo, São Paulo (SP), 05508-000, Brazil
| | | | | | | |
Collapse
|
11
|
Thirumalai D, Lee S, Kwon M, Paik HJ, Lee J, Chang SC. Disposable Voltammetric Sensor Modified with Block Copolymer-Dispersed Graphene for Simultaneous Determination of Dopamine and Ascorbic Acid in Ex Vivo Mouse Brain Tissue. BIOSENSORS-BASEL 2021; 11:bios11100368. [PMID: 34677324 PMCID: PMC8534151 DOI: 10.3390/bios11100368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 12/02/2022]
Abstract
Dopamine (DA) and ascorbic acid (AA) are two important biomarkers with similar oxidation potentials. To facilitate their simultaneous electrochemical detection, a new voltammetric sensor was developed by modifying a screen-printed carbon electrode (SPCE) with a newly synthesized block copolymer (poly(DMAEMA-b-styrene), PDbS) as a dispersant for reduced graphene oxide (rGO). The prepared PDbS–rGO and the modified SPCE were characterized using a range of physical and electrochemical techniques including Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and linear sweep voltammetry. Compared to the bare SPCE, the PDbS–rGO-modified SPCE (PDbS–rGO/SPCE) showed better sensitivity and peak-to-peak separation for DA and AA in mixed solutions. Under the optimum conditions, the dynamic linear ranges for DA and AA were 0.1–300 and 10–1100 µM, and the detection limits were 0.134 and 0.88 µM (S/N = 3), respectively. Furthermore, PDbS–rGO/SPCE exhibited considerably enhanced anti-interference capability, high reproducibility, and storage stability for four weeks. The practical potential of the PDbS–rGO/SPCE sensor for measuring DA and AA was demonstrated using ex vivo brain tissues from a Parkinson’s disease mouse model and the control.
Collapse
Affiliation(s)
- Dinakaran Thirumalai
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea;
| | - Seulah Lee
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (J.L.)
| | - Minho Kwon
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea; (M.K.); (H.-j.P.)
| | - Hyun-jong Paik
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea; (M.K.); (H.-j.P.)
| | - Jaewon Lee
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (J.L.)
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea;
- Correspondence:
| |
Collapse
|
12
|
Rajarathinam T, Kwon M, Thirumalai D, Kim S, Lee S, Yoon JH, Paik HJ, Kim S, Lee J, Ha HK, Chang SC. Polymer-dispersed reduced graphene oxide nanosheets and Prussian blue modified biosensor for amperometric detection of sarcosine. Anal Chim Acta 2021; 1175:338749. [PMID: 34330447 DOI: 10.1016/j.aca.2021.338749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022]
Abstract
A new disposable amperometric biosensor for sarcosine (Sar, a biomarker for prostate cancer) was designed based on screen-printed carbon electrodes, Prussian blue, polymer dispersed reduced graphene oxide (P-rGO) nanosheets, and sarcosine oxidase (SOx). Poly(sodium 4-styrenesulfonate-r-LAHEMA) denoted as PSSL was newly synthesized as dispersant for rGO. The P-rGO was utilized for SOx immobilization, the sulfonate and disulfide functionalities in PSSL enable physical adsorption of SOx and its bioactivity and stability properties were improved. The biosensor was optimized by various enzyme concentration, applied potential, and operating pH. Under the optimized conditions, the biosensor exhibited maximum current responses within 5 s at an applied potential of -0.1 V vs. integrated Ag/AgCl reference electrode. The biosensor had a dynamic linear range of 10-400 μM, with a sensitivity of 9.04 μA mM-1 cm-2 and a low detection limit of 0.66 μM (S/N = 3). Additionally, the biosensor possesses strong anti-interference capability, high reproducibility, and storage stability over 3 weeks. Furthermore, its clinical applicability was tested in urine samples from both prostate cancer patients and healthy control, and the analytical recoveries were satisfactory. Therefore, this biosensor has significant potential in the rapid and non-invasive point-of-care testing for prostate cancer diagnosis.
Collapse
Affiliation(s)
- Thenmozhi Rajarathinam
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Minho Kwon
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Dinakaran Thirumalai
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| | - Seonghye Kim
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Seulah Lee
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jang-Hee Yoon
- Busan Center, Korea Basic Science Institute, Busan, 46241, Republic of Korea
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaewon Lee
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Hong Koo Ha
- Department of Urology and Biomedical Research Institute, Pusan National University Hospital, Pusan National University, Busan, 49241, Republic of Korea.
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|