1
|
Gaumerd V, Capello Y, Bonnin Q, Renard PY, Romieu A. Fluorogenic detection of cyanide ions in pure aqueous media through an intramolecular crossed-benzoin reaction: limitations unveiled and possible solutions. Analyst 2024; 150:168-176. [PMID: 39600209 DOI: 10.1039/d4an01368a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Reaction-based fluorogenic sensing of lethal cyanide anions in aqueous matrices remains a big challenge. We have revisited the reported approach about an intramolecular crossed-benzoin reaction leading to the release of a phenol-based fluorophore. Fluorescence assays and RP-HPLC-MS analyses have helped us to highlight its limitations related to poor aqueous stability of probes and impossibility to achieve molecular amplification despite the assumed catalytic activation mechanism. Traceless cleavable linker strategies were considered to obtain usable cyanide-responsive chemodosimeters and statistical analyses of fluorescence data have been conducted in depth to accurately delineate their sensing performances, especially the limit of detection (LOD).
Collapse
Affiliation(s)
- Vincent Gaumerd
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, 9, Avenue Alain Savary, 21000 Dijon, France.
- French Environment and Energy Management Agency, 20, avenue du Grésillé - BP 90406, 49004 Angers Cedex 01, France
| | - Yoan Capello
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, 9, Avenue Alain Savary, 21000 Dijon, France.
| | - Quentin Bonnin
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, 9, Avenue Alain Savary, 21000 Dijon, France.
| | - Pierre-Yves Renard
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, 76000 Rouen, France
| | - Anthony Romieu
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, 9, Avenue Alain Savary, 21000 Dijon, France.
| |
Collapse
|
2
|
Assel A, Stanley MM, Mia R, Boulila B, Cragg PJ, Owolabie I, Hetrick M, Flynt A, Wallace KJ, Ben Jannet H. A molecular chemodosimeter to probe "closed shell" ions in kidney cells. Org Biomol Chem 2023; 21:9379-9391. [PMID: 37975744 DOI: 10.1039/d3ob01408h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Two quinidine-functionalized coumarin molecular probes have been synthesized and have been found to bind metal cations (Cd2+, Co2+, Cu2+, Fe2+, Hg2+, Ni2+, and Zn2+) with high affinity in organic-aqueous media (DMSO-HEPES). The chemodosimeters coordinate with the Zn2+ ions in a two-to-one ratio (molecular probe : Zn2+) with a log β of 10.0 M-2. Upon the addition of the closed-shell metal ions studied, a fluorescence turn-on via an excimer formation is seen at 542 nm due to the quinaldine moiety adopting a syn arrangement when coordinated to the metal Zn2+ ions. Confocal microscopy monitored free Zn2+ ions in the Human Embryonic Kidney cell line HEK293 by coordinating with the chemodosimter.
Collapse
Affiliation(s)
- Amine Assel
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019 Monastir, Tunisia
| | - Meagan M Stanley
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Science, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA.
| | - Rashid Mia
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Science, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA.
- Department of Chemistry and Biochemistry, Stephen F Austin State University, P.O. Box 13006 SFA Station, Nacogdoches, TX 75962, USA
| | - Besma Boulila
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019 Monastir, Tunisia
| | - Peter J Cragg
- School of Applied Chemical Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - Iyanuoluwani Owolabie
- Department of Cellular and Molecular Biology, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Meredith Hetrick
- Department of Cellular and Molecular Biology, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Alex Flynt
- Department of Cellular and Molecular Biology, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Karl J Wallace
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Science, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA.
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019 Monastir, Tunisia
| |
Collapse
|
3
|
Sarkar S, Shil A, Maity S, Jung YL, Dai M, Acharya A, Ahn KH. A General Strategy Toward pH-Resistant Phenolic Fluorophores for High-Fidelity Sensing and Bioimaging Applications. Angew Chem Int Ed Engl 2023; 62:e202311168. [PMID: 37700529 DOI: 10.1002/anie.202311168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
Aryl alcohol-type or phenolic fluorophores offer diverse opportunities for developing bioimaging agents and fluorescence probes. Due to the inherently acidic hydroxyl functionality, phenolic fluorophores provide pH-dependent emission signals. Therefore, except for developing pH probes, the pH-dependent nature of phenolic fluorophores should be considered in bioimaging applications but has been neglected. Here we show that a simple structural remedy converts conventional phenolic fluorophores into pH-resistant derivatives, which also offer "medium-resistant" emission properties. The structural modification involves a single-step introduction of a hydrogen-bonding acceptor such as morpholine nearby the phenolic hydroxyl group, which also leads to emission bathochromic shift, increased Stokes shift, enhanced photo-stability and stronger emission for several dyes. The strategy greatly expands the current fluorophores' repertoire for reliable bioimaging applications, as demonstrated here with ratiometric imaging of cells and tissues.
Collapse
Affiliation(s)
- Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Gyeongbuk, 37673, Republic of Korea
| | - Anushree Shil
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Gyeongbuk, 37673, Republic of Korea
| | - Suman Maity
- Department of Chemistry and Bioinspired Syracuse, Syracuse University, Syracuse, NY 13244, USA
| | - Yun Lim Jung
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Gyeongbuk, 37673, Republic of Korea
| | - Mingchong Dai
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Gyeongbuk, 37673, Republic of Korea
| | - Atanu Acharya
- Department of Chemistry and Bioinspired Syracuse, Syracuse University, Syracuse, NY 13244, USA
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
4
|
Ma L, Li X, Petersen RB, Peng A, Huang K. Probing the interactions between amyloidogenic proteins and bio-membranes. Biophys Chem 2023; 296:106984. [PMID: 36889133 DOI: 10.1016/j.bpc.2023.106984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Protein misfolding diseases (PMDs) in humans are characterized by the deposition of protein aggregates in tissues, including Alzheimer's disease, Parkinson's disease, type 2 diabetes, and amyotrophic lateral sclerosis. Misfolding and aggregation of amyloidogenic proteins play a central role in the onset and progression of PMDs, and these processes are regulated by multiple factors, especially the interaction between proteins and bio-membranes. Bio-membranes induce conformational changes in amyloidogenic proteins and affect their aggregation; on the other hand, the aggregates of amyloidogenic proteins may cause membrane damage or dysfunction leading to cytotoxicity. In this review, we summarize the factors that affect the binding of amyloidogenic proteins and membranes, the effects of bio-membranes on the aggregation of amyloidogenic proteins, mechanisms of membrane disruption by amyloidogenic aggregates, technical approaches for detecting these interactions, and finally therapeutic strategies targeting membrane damage caused by amyloidogenic proteins.
Collapse
Affiliation(s)
- Liang Ma
- Department of Pharmacy, Wuhan Mental Health Center, Wuhan, China; Department of Pharmacy, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, China.
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Hurley JJM, Meisner QJ, Guo P, Schaller RD, Gosztola DJ, Wiederrecht GP, Zhu L. Triple Emission of 5'-( para-R-Phenylene)vinylene-2-(2'-hydroxyphenyl)benzoxazole ( PVHBO). Part II: Emission from Anions. J Phys Chem A 2022; 126:1062-1075. [PMID: 35143198 DOI: 10.1021/acs.jpca.1c10167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper is the second part of a study on the effects of a substituted 5'-phenylenevinylene (PV) functionality on the emission properties of 2-(2'-hydroxyphenyl)benzoxazole (HBO)─a dye that is known for excited-state intramolecular proton transfer. The topical compounds are referred to as PVHBOs, each of which is a structural fusion of HBO and a 4-hydroxy-4'-R-stilbene fluorophore that occurs at the hydroxyphenyl moiety. Therefore, the resulting fusion fluorophore manifests the properties of one component or the other, as governed by its interactions with the environment. In part I (the preceding paper), PVHBOs are divided into two groups depending on whether the R substituent is electron-donating/neutral (group I) or electron-withdrawing (group II). The difference in absorption and emission properties between groups I and II is explained based on observations from spectroscopic experiments (both steady-state and time-resolved) and quantum chemical calculations. In the current paper, the same set of tools is applied to characterize the photophysical properties of the conjugate bases─that is, the anions─of PVHBOs. The emission energy of the anion of any group I compound, where the R substituent is either electron-donating or neutral, is situated between those of the neutral enol and keto forms. The emission of the anion of any given group II compound, on the other hand, has a lower energy than both the enol and keto emissions. The frontier molecular orbitals (i.e., HOMO, LUMO, and LUMO + 1) of a PVHBO localized on either HBO or stilbenoid are impacted by the substituent R and the solvent/additive differently, which leads to the differences in the optical properties of group I and II PVHBOs in both neutral and anion forms.
Collapse
Affiliation(s)
- Joseph J M Hurley
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306-4390, United States
| | - Quinton J Meisner
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306-4390, United States
| | - Peijun Guo
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David J Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Gary P Wiederrecht
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|