1
|
Bajpai N, Bagchi D. Bioenergy feedstock production in Chlamydomonas reinhardtii (microalgae) cultivated under mixotrophic growth with cellulose hydrolysate from agricultural waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34258-x. [PMID: 38980485 DOI: 10.1007/s11356-024-34258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
In the present study, cellulose purified from finger millet agricultural waste is subjected to enzymatic hydrolysis, and the hydrolysate (predominantly glucose) is used as a carbon source supplement in the media for the mixotrophic growth of Chlamydomonas reinhardtii. Interestingly, a switch between excess starch production and excess lipid (triacylglycerols, TAG) production occurs by a small change in hydrolysate concentration in the media. Starch production increased 4.5-fold with respect to the photoautotrophic control, with a glucose concentration of 3 mg/mL in the media after hydrolysate addition. This culture had TAG production enhancement by 1.5-fold. However, mixotrophic cultivation with 4 mg/mL glucose concentration in the media with hydrolysate addition resulted in TAG productivity enhancement by 4.2-fold compared to control and starch amount increase of 1.3-fold. The organic carbon source (glucose) and the inorganic carbon source (citrate ions) in the hydrolysate together played a role in this delicate switching between starch and lipid pathways. Proteins, starch, and TAG molecules are analyzed in the microalgal cells grown under different conditions with FTIR spectroscopy, a rapid, high-throughput method of biomolecular estimation. High-resolution single-cell AFM studies of the cell wall structure reveal enhanced corrugations in surface morphology during mixotrophic growth with cellulose hydrolysate, illustrating an adaptive mechanism with improved mechanical stress management. Lipid droplet morphology at the single-cell level points to two distinct mechanisms of lipid accumulation: one in which the lipids are segregated as droplets, and the other in which lipid molecules are uniformly dispersed in the cytosol as unresolved, ultra-small droplets. The present study therefore analyzes both the bulk and the single-cell level changes when cellulose hydrolysate is used as a carbon source for Chlamydomonas reinhardtii mixotrophic cultivation, which serves a four-fold purpose: value from waste, fixation of atmospheric CO2, production of lipids for biodiesel, and starch for bioethanol.
Collapse
Affiliation(s)
- Nandita Bajpai
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Debjani Bagchi
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
2
|
Goswami RK, Mehariya S, Verma P. Sub-pilot scale sequential microalgal consortium-based cultivation for treatment of municipal wastewater and biomass production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123796. [PMID: 38518973 DOI: 10.1016/j.envpol.2024.123796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Municipal wastewater (MWW) was treated by a sequential pilot microalgal cultivation process. The cultivation was performed inside a specifically designed low-cost photobioreactor (PBR) system. A microalgal consortium 2:1 was developed using Tetraselmis indica (TS) and Picochlorum sp. (PC) in the first stage and PC:TS (2:1) in the second stage and the nutrient removal efficiency and biomass production and biomolecules production was evaluated and also compared with monoculture in a two-stage sequential cultivation system. This study also investigated the effect of seasonal variations on microalgae growth and MWW treatment. The results showed that mixed microalgal consortium (TS:PC) had higher nutrient removal efficiency, with chemical oxygen demand (COD), total phosphate (TP), and total nitrate (TN) removal efficiencies of 78.50, 84.49, and 84.20%, respectively, and produced a biomass of 2.50 g/L with lipid content of 37.36% in the first stage of cultivation under indoor conditions. In the second stage of indoor cultivation, the PC:TS consortium demonstrated maximum COD, TP, and TN removal efficiencies of 92.49, 94.24, and 94.16%, respectively. It also produced a biomass of 2.65 g/L with a lipid content of 40.67%. Among all the seasonal variations, mass flow analysis indicated that the combination of mixed consortium-based two-stage sequential process during the winter season favored maximum nutrient removal efficiency of TN i.e. 88.54% (84.12 mg/L) and TP i.e., 90.18% (43.29 mg/L), respectively. It also enhanced total biomass production of 49.10 g in 20-L medium, which includes lipid yield ∼15.68 g compared to monoculture i.e., 82.06% (78.70 mg/L) and 82.87% (40.26 mg/L) removal of TN and TP, respectively, and produced biomass 43.60 g with 11.90 g of lipids.
Collapse
Affiliation(s)
- Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
3
|
Dey R, Ortiz Tena F, Wang S, Martin Messmann J, Steinweg C, Thomsen C, Posten C, Leu S, Ullrich MS, Thomsen L. Exploring advanced phycoremediation strategies for resource recovery from secondary wastewater using a large scale photobioreactor. BIORESOURCE TECHNOLOGY 2024; 391:129986. [PMID: 37931766 DOI: 10.1016/j.biortech.2023.129986] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
This study aimed to investigate the operation of a 1000L microalgae-based membrane photobioreactor system in a greenhouse for continuous secondary wastewater treatment using Desmodesmus sp., a green microalgae strain originally isolated from a German sewage plant. The research spanned both summer and winter seasons, seeking to comprehend key trends and optimization strategies. Maintaining low cell concentrations in the photobioreactor during periods of light inhibition proved advantageous for nutrient uptake rates. Effective strategies for enhancing algae-based wastewater treatment included cell mass recycling, particularly during periods of high light availability. In comparison to conventional continuous cultivation methods, employing cell recycling and high dilution rates during times of abundant light, alongside using low cell concentrations and dilution rates during light inhibition, resulted in an 80 % and 10 % increase in overall biomass productivity during summer and winter, respectively. Furthermore, nitrogen/phosphorus (N/P) removal rates exhibited a 23 % improvement during winter, while remaining unchanged in summer.
Collapse
Affiliation(s)
- Rohit Dey
- School of Science, Constructor University Bremen, Germany.
| | | | - Song Wang
- College of Life Sciences and Oceanography, Shenzhen University, China
| | | | | | | | | | - Stefan Leu
- Ben-Gurion University of the Negev, Israel
| | | | - Laurenz Thomsen
- School of Science, Constructor University Bremen, Germany; University of Gothenburg, Department of Marine Sciences Sweden
| |
Collapse
|
4
|
Montuori E, Saggiomo M, Lauritano C. Microalgae from Cold Environments and Their Possible Biotechnological Applications. Mar Drugs 2023; 21:md21050292. [PMID: 37233486 DOI: 10.3390/md21050292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Cold environments include deep ocean, alpine, and polar areas. Even if the cold conditions are harsh and extreme for certain habitats, various species have been adapted to survive in them. Microalgae are among the most abundant microbial communities which have adapted to live in low light, low temperature, and ice coverage conditions typical of cold environments by activating different stress-responsive strategies. These species have been shown to have bioactivities with possible exploitation capabilities for human applications. Even if they are less explored compared to species living in more accessible sites, various activities have been highlighted, such as antioxidant and anticancer activities. This review is focused on summarizing these bioactivities and discussing the possible exploitation of cold-adapted microalgae. Thanks to the possibility of mass cultivating algae in controlled photobioreactors, eco-sustainable exploitation is in fact possible by sampling a few microalgal cells without impacting the environment.
Collapse
Affiliation(s)
- Eleonora Montuori
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Maria Saggiomo
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica, Via Acton 55, 80133 Napoli, Italy
| | - Chiara Lauritano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| |
Collapse
|
5
|
Ferrari M, Muto A, Bruno L, Cozza R. DNA Methylation in Algae and Its Impact on Abiotic Stress Responses. PLANTS (BASEL, SWITZERLAND) 2023; 12:241. [PMID: 36678953 PMCID: PMC9861306 DOI: 10.3390/plants12020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Epigenetics, referring to heritable gene regulatory information that is independent of changes in DNA sequences, is an important mechanism involved both in organism development and in the response to environmental events. About the epigenetic marks, DNA methylation is one of the most conserved mechanisms, playing a pivotal role in organism response to several biotic and abiotic stressors. Indeed, stress can induce changes in gene expression through hypo- or hyper-methylation of DNA at specific loci and/or in DNA methylation at the genome-wide level, which has an adaptive significance and can direct genome evolution. Exploring DNA methylation in responses to abiotic stress could have important implications for improving stress tolerance in algae. This article summarises the DNA methylation pattern in algae and its impact on abiotic stress, such as heavy metals, nutrients and temperature. Our discussion provides information for further research in algae for a better comprehension of the epigenetic response under abiotic stress, which could favour important implications to sustain algae growth under abiotic stress conditions, often related to high biosynthesis of interesting metabolites.
Collapse
|
6
|
Jebali A, Sanchez MR, Hanschen ER, Starkenburg SR, Corcoran AA. Trait drift in microalgae and applications for strain improvement. Biotechnol Adv 2022; 60:108034. [PMID: 36089253 DOI: 10.1016/j.biotechadv.2022.108034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/06/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
Microalgae are increasingly used to generate a wide range of commercial products, and there is growing evidence that microalgae-based products can be produced sustainably. However, industrial production of microalgal biomass is not as developed as other biomanufacturing platform technologies. In addition, results of bench-scale research often fail to translate to large-scale or mass production systems. This disconnect may result from trait drift and evolution occurring, through time, in response to unique drivers in each environment, such as cultivation regimes, weather, and pests. Moreover, outdoor and indoor cultivation of microalgae has the potential to impose negative selection pressures, which makes the maintenance of desired traits a challenge. In this context, this review sheds the light on our current understanding of trait drift and evolution in microalgae. We delineate the basics of phenotype plasticity and evolution, with a focus on how microalgae respond under various conditions. In addition, we review techniques that exploit phenotypic plasticity and evolution for strain improvement in view of industrial commercial applications, highlighting associated advantages and shortcomings. Finally, we suggest future research directions and recommendations to overcome unwanted trait drift and evolution in microalgae cultivation.
Collapse
Affiliation(s)
- Ahlem Jebali
- New Mexico Consortium, 4200 W. Jemez Road, Los Alamos, NM 87544, USA.
| | - Monica R Sanchez
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA
| | - Erik R Hanschen
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA
| | | | - Alina A Corcoran
- New Mexico Consortium, 4200 W. Jemez Road, Los Alamos, NM 87544, USA
| |
Collapse
|
7
|
Identification of Metabolites with Antibacterial Activities by Analyzing the FTIR Spectra of Microalgae. Life (Basel) 2022; 12:life12091395. [PMID: 36143431 PMCID: PMC9506262 DOI: 10.3390/life12091395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Biologically active substances from microalgae can exhibit antioxidant, immunostimulating, antibacterial, antiviral, antitumor, antihypertensive, regenerative, and neuroprotective effects. Lipid complexes of microalgae Chlorella vulgaris and Arthrospira platensis exhibit antibacterial activity and inhibit the growth of the Gram-positive strain Bacillus subtilis; the maximum zone of inhibition is 0.7 ± 0.03 cm at all concentrations. The carbohydrate-containing complex of C. vulgaris exhibits antibacterial activity, inhibits the growth of the Gram-positive strain B. subtilis, Bacillus pumilus; the maximum zone of inhibition is 3.5 ± 0.17 cm at all concentrations considered. The carbohydrate complex of A. platensis has antimicrobial activity against the Gram-negative strain of Escherichia coli at all concentrations, and the zone of inhibition is 2.0–3.0 cm. The presence of mythelenic, carbonyl groups, ester bonds between fatty acids and glycerol in lipid molecules, the stretching vibration of the phosphate group PO2, neutral lipids, glyco- and phospholipids, and unsaturated fatty acids, such as γ-linolenic, was revealed using FTIR spectra. Spectral peaks characteristic of saccharides were found, and there were cellulose and starch absorption bands, pyranose rings, and phenolic compounds. Both algae in this study had phenolic and alcohol components, which had high antibacterial activity. Microalgae can be used as biologically active food additives and/or as an alternative to antibiotic feed in animal husbandry due to their antibacterial properties.
Collapse
|
8
|
Microalgae Polysaccharides: An Alternative Source for Food Production and Sustainable Agriculture. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Carbohydrates or polysaccharides are the main products derived from photosynthesis and carbon fixation in the Calvin cycle. Compared to other sources, polysaccharides derived from microalgae are safe, biocompatible, biodegradable, stable, and versatile. These polymeric macromolecules present complex biochemical structures according to each microalgal species. In addition, they exhibit emulsifying properties and biological characteristics that include antioxidant, anti-inflammatory, antitumor, and antimicrobial activities. Some microalgal species have a naturally high concentration of carbohydrates. Other species can adapt their metabolism to produce more sugars from changes in temperature and light, carbon source, macro and micronutrient limitations (mainly nitrogen), and saline stress. In addition to growing in adverse conditions, microalgae can use industrial effluents as an alternative source of nutrients. Microalgal polysaccharides are predominantly composed of pentose and hexose monosaccharide subunits with many glycosidic bonds. Microalgae polysaccharides can be structural constituents of the cell wall, energy stores, or protective polysaccharides and cell interaction. The industrial use of microalgae polysaccharides is on the rise. These microorganisms present rheological and biological properties, making them a promising candidate for application in the food industry and agriculture. Thus, microalgae polysaccharides are promising sustainable alternatives for potential applications in several sectors, and the choice of producing microalgal species depends on the required functional activity. In this context, this review article aims to provide an overview of microalgae technology for polysaccharide production, emphasizing its potential in the food, animal feed, and agriculture sector.
Collapse
|
9
|
Parichehreh R, Gheshlaghi R, Mahdavi MA, Kamyab H. Investigating the effects of eleven key physicochemical factors on growth and lipid accumulation of Chlorella sp. as a feedstock for biodiesel production. J Biotechnol 2021; 340:64-74. [PMID: 34454961 DOI: 10.1016/j.jbiotec.2021.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/08/2021] [Accepted: 08/21/2021] [Indexed: 01/22/2023]
Abstract
Biodiesel, as a renewable and eco-friendly energy source that can be produced through algae oil esterification, has recently received much attention. Maximization of algal biomass and lipid content is crucial for commercial biodiesel production. In this study, Chlorella sp. PG96, a microalgal strain isolated from urban wastewater, was identified considering its morphological and molecular characteristics. Fractional factorial design (211-7) was employed to screen medium and environmental factors for achieving high lipid productivity. The effects of eleven factors including light intensity, light spectrum, aeration rate, temperature, salinity, NaHCO3, CO2, NaNO3, NH4Cl, MgSO4.7H2O, and K2HPO4 and their interactions on growth characteristics of Chlorella sp. PG96 (biomass and lipid production) were statistically assessed. Based on the experimental results, lipid productivity was at its maximum (54.19 ± 8.40 mglipid L-1 day-1) under a combination of high levels of all factors. The analysis also showed that physical parameters of light intensity and temperature were more effective on algal growth compared to nutritional parameters. Furthermore, nitrogen source of ammonium and carbon source of bicarbonate played more significant roles in biomass and lipid production, compared with nitrate and CO2, respectively. Although the effect of sulfur limitation on cellular growth was similar to phosphorus deficiency, S-limitation had a greater impact on lipid accumulation. The interaction between NaHCO3 and NH4Cl was the most prominent interaction affecting all responses. It is concluded that Chlorella sp. PG96 at a high level of light intensity and temperature (22500 Lux and 32 °C, respectively) can be a prospective candidate for biodiesel production.
Collapse
Affiliation(s)
- Roya Parichehreh
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Pardis Campus, Mashhad, Khorasan Razavi, Iran, Postal Code 9177948944.
| | - Reza Gheshlaghi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Pardis Campus, Mashhad, Khorasan Razavi, Iran, Postal Code 9177948944.
| | - Mahmood Akhavan Mahdavi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Pardis Campus, Mashhad, Khorasan Razavi, Iran, Postal Code 9177948944.
| | - Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia.
| |
Collapse
|