1
|
Walencik PK, Choińska R, Gołębiewska E, Kalinowska M. Metal-Flavonoid Interactions-From Simple Complexes to Advanced Systems. Molecules 2024; 29:2573. [PMID: 38893449 PMCID: PMC11173564 DOI: 10.3390/molecules29112573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
For many years, metal-flavonoid complexes have been widely studied as a part of drug discovery programs, but in the last decade their importance in materials science has increased significantly. A deeper understanding of the role of metal ions and flavonoids in constructing simple complexes and more advanced hybrid networks will facilitate the assembly of materials with tailored architecture and functionality. In this Review, we highlight the most essential data on metal-flavonoid systems, presenting a promising alternative in the design of hybrid inorganic-organic materials. We focus mainly on systems containing CuII/I and FeIII/II ions, which are necessary in natural and industrial catalysis. We discuss two kinds of interactions that typically ensure the formation of metal-flavonoid systems, namely coordination and redox reactions. Our intention is to cover the fundamentals of metal-flavonoid systems to show how this knowledge has been already transferred from small molecules to complex materials.
Collapse
Affiliation(s)
- Paulina Katarzyna Walencik
- Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Renata Choińska
- Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Ewelina Gołębiewska
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland;
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland;
| |
Collapse
|
2
|
Xiao W, Zhang Q, You DH, Xue W, Peng F, Li NB, Zhou GM, Luo HQ. Myricetin-based fluorescence probes with AIE and ESIPT properties for detection of hydrazine in the environment and fingerprinting. Anal Chim Acta 2024; 1288:342173. [PMID: 38220304 DOI: 10.1016/j.aca.2023.342173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/13/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Hydrazine (N2H4) is a highly toxic and versatile chemical raw material, which poses a serious threat to the environment and human health when used in large quantities. However, the traditional methods for the detection of N2H4 have the disadvantages of time-consuming, complicated operation and expensive instruments. In contrast, fluorescence probes have many advantages, such as simple operation, high sensitivity, good selectivity, and fast response time. Therefore, there is an urgent need for a fluorescence probe that can rapidly and accurately detect the presence of N2H4 and monitor the changes in its concentration. RESULTS For this purpose, we designed and synthesized a series of myricetin fluorescence probes 3-(substituent group)-5,7-dimethoxy-4-oxo-2-(3,4,5-trimethoxy. phenyl)-4H-chromen-4-one (Myr-R) for N2H4 detection. In the presence of N2H4, the probe 5,7-dimethoxy-3-(2,3,4,5,6-pentafluorobenzoate)-2-(3,4,5-trimethoxyphen-yl). -4H-chr-omen-4-one (Myr-3) shows significant fluorescence changes, double emission properties and a large Stokes shift (183 nm), and exhibits high selectivity and sensitivity to N2H4 (The detection limit is 93 nM). Importantly, the qualitative and quantitative analysis of N2H4 in water, soil, and air can be accomplished using fluorescence, smartphone, and UV lamps coupled with Myr-3. In addition, Myr-3 can be used for monitoring and imaging intracellular N2H4. Meanwhile, the fluorophore 3-hydroxy-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-benzopyran-4-one (Myr-Me) was applied to fingerprinting of different substrate materials due to the fact that it exhibits strong yellow fluorescence emission in the solid state and shows excellent contrast and high resolution. SIGNIFICANCE The probe Myr-3 is not only able to rapidly detect N2H4 in complex environments, but also can be used for imaging intracellular N2H4. In addition, the fluorophore Myr-Me can be used as an effective imaging agent for visual fingerprinting. These properties enable the probe Myr-3 and the fluorophore Myr-Me for a wide range of potential applications in related fields.
Collapse
Affiliation(s)
- Wei Xiao
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Qing Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Dong Hui You
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, PR China
| | - Feng Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, PR China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Guang Ming Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
3
|
Kagdada HL, Bhojani AK, Singh DK. An Overview of Nanomaterials: History, Fundamentals, and Applications. NANOMATERIALS 2023:1-26. [DOI: 10.1007/978-981-19-7963-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Roy T, Dey SK, Pradhan A, Chaudhuri AD, Dolai M, Mandal SM, Choudhury SM. Facile and Green Fabrication of Highly Competent Surface-Modified Chlorogenic Acid Silver Nanoparticles: Characterization and Antioxidant and Cancer Chemopreventive Potential. ACS OMEGA 2022; 7:48018-48033. [PMID: 36591115 PMCID: PMC9798512 DOI: 10.1021/acsomega.2c05989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The eco-friendly, cost-effective, and green fabrication of nanoparticles is considered a promising area of nanotechnology. Here, we report on the green synthesis and characterization of bovine serum albumin (BSA)-decorated chlorogenic acid silver nanoparticles (AgNPs-CGA-BSA) and the studies undertaken to verify their plausible antioxidant and antineoplastic effects. High-resolution transmission electron microscopy (HR-TEM), dynamic light scattering, X-ray diffraction, and Fourier transform infrared analyses depict an average mean particle size of ∼96 nm, spherical morphology, and nanocrystalline structure of AgNPs-CGA-BSA. DPPH scavenging and inhibition of lipid peroxidation signify the noticeable in vitro antioxidant potential of the nanoparticles. The in vitro experimental results demonstrate that AgNPs-CGA-BSA shows significant cytotoxicity to Dalton's lymphoma ascites (DLA) cells and generates an enhanced intracellular reactive oxygen species and oxidized glutathione (GSSG) and reduced glutathione (GSH) in DLA cells. Furthermore, mechanism investigation divulges the pivotal role of the downregulated expression of superoxide dismutase (SOD) and catalase (CAT), and these ultimately lead to apoptotic chromatin condensation in AgNPs-CGA-BSA-treated DLA cells. In addition, in vivo experiments reveal an excellent decrease in tumor cell count, an increase in serum GSH and CAT, SOD, and glutathione peroxidase activities, and a decrease in the malondialdehyde (MDA) level in DLA-bearing mice after AgNPs-CGA-BSA treatment. These findings suggest that the newly synthesized biogenic green silver nanoparticles have remarkable in vitro antioxidant and antineoplastic efficacy that triggers cytotoxicity, oxidative stress, and chromatin condensation in DLA cells and in vivo anticancer efficacy that enhances the host antioxidant status, and these might open a new path in T-cell lymphoma therapy.
Collapse
Affiliation(s)
- Tamanna Roy
- Biochemistry,
Molecular Endocrinology and Reproductive Physiology Laboratory, Department
of Human Physiology, Vidyasagar University, Midnapore721102, West Bengal, India
| | - Surya Kanta Dey
- Biochemistry,
Molecular Endocrinology and Reproductive Physiology Laboratory, Department
of Human Physiology, Vidyasagar University, Midnapore721102, West Bengal, India
| | - Ananya Pradhan
- Biochemistry,
Molecular Endocrinology and Reproductive Physiology Laboratory, Department
of Human Physiology, Vidyasagar University, Midnapore721102, West Bengal, India
| | - Angsuman Das Chaudhuri
- Biochemistry,
Molecular Endocrinology and Reproductive Physiology Laboratory, Department
of Human Physiology, Vidyasagar University, Midnapore721102, West Bengal, India
| | - Malay Dolai
- Department
of Chemistry, Prabhat Kumar College, Purba Medinipur721404, West Bengal, India
| | - Santi M. Mandal
- Central
Research Facility, Indian Institute of Technology, Kharagpur721302, India
| | - Sujata Maiti Choudhury
- Biochemistry,
Molecular Endocrinology and Reproductive Physiology Laboratory, Department
of Human Physiology, Vidyasagar University, Midnapore721102, West Bengal, India
| |
Collapse
|
5
|
Gandha Gogoi N, Dutta P, Saikia J, Handique JG. Antioxidant, Antibacterial, and BSA Binding Properties of Curcumin Caffeate Capped Silver Nanoparticles Prepared by Greener Method. ChemistrySelect 2022. [DOI: 10.1002/slct.202203989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nishi Gandha Gogoi
- Department of Chemistry Dibrugarh University 786004 Dibrugarh Assam India
| | - Pankaj Dutta
- Department of Physics Dibrugarh University 786004 Dibrugarh Assam India
| | - Jiban Saikia
- Department of Chemistry Dibrugarh University 786004 Dibrugarh Assam India
| | | |
Collapse
|
6
|
Phyto-Green (Grape, Orange Pomace) and Chemical Fabricated Silver Nanoparticles: Influence Type of Stabilizers Component on Antioxidant and Antimicrobial Activity. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Fathy HM, Abd El-Maksoud AA, Cheng W, Elshaghabee FMF. Value-Added Utilization of Citrus Peels in Improving Functional Properties and Probiotic Viability of Acidophilus-bifidus-thermophilus (ABT)-Type Synbiotic Yoghurt during Cold Storage. Foods 2022; 11:foods11172677. [PMID: 36076870 PMCID: PMC9455927 DOI: 10.3390/foods11172677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Citrus peel, a fruit-processing waste, is a substantial source of naturally occurring health-promoting compounds, including polyphenols, and has great potential as a dietary supplement for enhancing the functional properties of food. The present work aimed to investigate the effects of sour orange (SO), sweet orange (SWO), and lemon (LO) peels on the typical physiochemical, antioxidant, antibacterial, and probiotic properties of synbiotic yoghurt fermented by acidophilus-bifidus-thermophilus (ABT)-type cultures during cold storage (0−28 days). High-performance liquid chromatography-diode array detection (HPLC-DAD) analysis showed that the total phenolic content in the SO peel were more than 2-fold higher than that in the SWO and LO peel. The predominant phenolic compounds were myricetin (2.10 mg/g dry weight) and o-coumaric acid (1.13 mg/g) in SO peel, benzoic acid (0.81 mg/g) and naringin (0.72 mg/g) in SWO peel, and benzoic acid (0.76 mg/g) and quercetin (0.36 mg/g) in LO peel. Only 0.5% (w/w) of citrus peel addition did not reduce the overall acceptance of ABT synbiotic yoghurt but led to increased acidity and decreased moisture during cold storage (14 and 28 days). Additionally, compared to control samples without citrus peel addition, supplementation with citrus peels improved the antioxidant property of the ABT synbiotic yoghurt. ABT milks with SO and SWO peel addition had significantly stronger DPPH radical scavenging activities than that with LO peel addition (p < 0.05). Antibacterial analysis of ABT synbiotic yoghurt with citrus peel addition showed that the diameters of inhibition zones against S. aureus, B. subtilis, and E. coli increased by 0.6−1.9 mm relative to the control groups, suggesting the enhancement of antibacterial activities by citrus peels. The viabilities of probiotic starter cultures (L. acidophilus, S. thermophilus, and Bifidobacterial sp.) were also enhanced by the incorporation of citrus peels in synbiotic yoghurt during cold storage. Hence, our results suggest that citrus peels, especially SO and SWO peels, could be recommended as a promising multifunctional additive for the development of probiotic and synbiotic yoghurt with enhanced antioxidant and antibacterial properties, as well as probiotic viability.
Collapse
Affiliation(s)
- Hayam M. Fathy
- Microbiology Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | | | - Weiwei Cheng
- Institute for Innovative Development of Food Industry, Institute for Advanced Study, Shenzhen University, 3688 Nanhai Road, Nanshan District, Shenzhen 518060, China
- Correspondence: ; Tel./Fax: +86-755-2653-9262
| | | |
Collapse
|
8
|
Synthesis and characterization of lanthanum-doped curcumin-functionalized antimicrobial copper oxide nanoparticles. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Javed Z, Khan K, Herrera-Bravo J, Naeem S, Iqbal MJ, Raza Q, Sadia H, Raza S, Bhinder M, Calina D, Sharifi-Rad J, Cho WC. Myricetin: targeting signaling networks in cancer and its implication in chemotherapy. Cancer Cell Int 2022; 22:239. [PMID: 35902860 PMCID: PMC9336020 DOI: 10.1186/s12935-022-02663-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
The gaps between the complex nature of cancer and therapeutics have been narrowed down due to extensive research in molecular oncology. Despite gathering massive insight into the mysteries of tumor heterogeneity and the molecular framework of tumor cells, therapy resistance and adverse side effects of current therapeutic remain the major challenge. This has shifted the attention towards therapeutics with less toxicity and high efficacy. Myricetin a natural flavonoid has been under the spotlight for its anti-cancer, anti-oxidant, and anti-inflammatory properties. The cutting-edge molecular techniques have shed light on the interplay between myricetin and dysregulated signaling cascades in cancer progression, invasion, and metastasis. However, there are limited data available regarding the nano-delivery platforms composed of myricetin in cancer. In this review, we have provided a comprehensive detail of myricetin-mediated regulation of different cellular pathways, its implications in cancer prevention, preclinical and clinical trials, and its current available nano-formulations for the treatment of various cancers.
Collapse
Affiliation(s)
- Zeeshan Javed
- grid.512552.40000 0004 5376 6253Office of Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Khushbukhat Khan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000 Pakistan
| | - Jesús Herrera-Bravo
- grid.441783.d0000 0004 0487 9411Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
- grid.412163.30000 0001 2287 9552Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Sajid Naeem
- grid.32566.340000 0000 8571 0482Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Muhammad Javed Iqbal
- grid.513947.d0000 0005 0262 5685Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Qamar Raza
- grid.412967.f0000 0004 0609 0799Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab Pakistan
| | - Haleema Sadia
- grid.440526.10000 0004 0609 3164Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87100 Pakistan
| | - Shahid Raza
- grid.512552.40000 0004 5376 6253Office of Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Munir Bhinder
- grid.412956.d0000 0004 0609 0537Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore, 54600 Pakistan
| | - Daniela Calina
- grid.413055.60000 0004 0384 6757Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Javad Sharifi-Rad
- grid.442126.70000 0001 1945 2902Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - William C. Cho
- grid.415499.40000 0004 1771 451XDepartment of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong China
| |
Collapse
|
10
|
Jamali M, Mohajer S, Sheikhlary S, Ara MHM. Z-scan optical method complements the Thioflavin T assay for investigation of anti-Alzheimer's impact of polyphenols. Photodiagnosis Photodyn Ther 2022; 39:102914. [PMID: 35595186 DOI: 10.1016/j.pdpdt.2022.102914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/26/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022]
Abstract
Polyphenols are tremendously effective in eliminating the amyloid-beta aggregations, the main hallmark of Alzheimer's disease. In recent years various nano drugs and biomaterials based on polyphenolic compounds have been synthetized to treat or prevent Alzheimer's disease, and the main in-vitro approach to investigate the anti-Alzheimer's properties of materials, is Thioflavin T assay. In spite of being very helpful, it has some drawbacks and cannot guarantee the accuracy of data, specifically in case of polyphenolic compounds; thus, rendering accurate results requires utilizing other assays along with Thioflavin T. In this experiment, we introduced Z-scan technique as a complementary test for Thioflavin T assay. In this study, the anti-Alzheimer's properties of two polyphenols quercetin and fulvic acid were assessed in the presence and absences of silver nanoparticles at various concentrations, both via Z-scan technique and Thioflavin T assay, after which the two tests were aligned with each other. The polyphenols' non-linear refractive indices obtained by the Z-scan technique correlated well with their related fluorescence intensities from the Thioflavin T assay in such a way that, the smaller the magnitude of the non-linear refractive indices, the stronger the anti-amyloidogenic impact. Our work shows that Z-scan could be used along with Thioflavin T for better investigation of polyphenols' anti-Alzheimer's properties.
Collapse
Affiliation(s)
- Mohammad Jamali
- Biophotonics Lab, Faculty of Physics, Kharazmi University, Karaj 31979-37551, Iran
| | - Salman Mohajer
- Biophotonics Lab, Faculty of Physics, Kharazmi University, Karaj 31979-37551, Iran; Applied Science Research Center, Kharazmi University, Karaj 31979-37551, Iran
| | - Sara Sheikhlary
- Faculty of Biological Sciences, Kharazmi University, Karaj 31979-37551, Iran
| | - Mohammad Hossien Majles Ara
- Biophotonics Lab, Faculty of Physics, Kharazmi University, Karaj 31979-37551, Iran; Applied Science Research Center, Kharazmi University, Karaj 31979-37551, Iran
| |
Collapse
|
11
|
Zeng A, Wang B, Zhang C, Yang R, Yu S, Zhao W. Physicochemical properties and antibacterial application of silver nanoparticles stabilized by whey protein isolate. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Zverev YF, Rykunova AY. Modern Nanocarriers as a Factor in Increasing the Bioavailability and Pharmacological Activity of Flavonoids. APPL BIOCHEM MICRO+ 2022; 58:1002-1020. [PMID: 36540406 PMCID: PMC9756931 DOI: 10.1134/s0003683822090149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022]
Abstract
This review is devoted to modern systems of nanocarriers that ensure the targeted delivery of flavonoids to various organs and systems. Flavonoids have wide range of effects on the human body due to their antioxidant, anti-inflammatory, antitumor, antimicrobial, antiplatelet and other types of activity. However, the low bioavailability of flavonoids significantly limits their practical application. To overcome this disadvantage, serious efforts have been made in recent years to develop nanoscale carriers for flavonoids. This is particularly important in view of the known antitumor effect of these compounds, which allows them to target tumor cells without affecting surrounding healthy tissues. Nanocarriers provide increased penetration of biologicals into specific organs in combination with controlled and prolonged release, which markedly improves their effectiveness. This review summarizes data on the use of phytosomes, lipid-based nanoparticles, as well as polymeric and inorganic nanoparticles; their advantages and drawbacks are analyzed; the prospect of their use is discussed that opens new possibilities for the clinical application of flavonoids.
Collapse
Affiliation(s)
- Ya. F. Zverev
- Altai State Medical University, 656038 Barnaul, Russia
| | - A. Ya. Rykunova
- Barnaul Law Institute, Ministry of Internal Affairs of Russia, 656038 Barnaul, Russia
| |
Collapse
|
13
|
Xu L, Zhu Z, Sun DW. Bioinspired Nanomodification Strategies: Moving from Chemical-Based Agrosystems to Sustainable Agriculture. ACS NANO 2021; 15:12655-12686. [PMID: 34346204 PMCID: PMC8397433 DOI: 10.1021/acsnano.1c03948] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/29/2021] [Indexed: 05/24/2023]
Abstract
Agrochemicals have supported the development of the agricultural economy and national population over the past century. However, excessive applications of agrochemicals pose threats to the environment and human health. In the last decades, nanoparticles (NPs) have been a hot topic in many fields, especially in agriculture, because of their physicochemical properties. Nevertheless, the prevalent methods for fabricating NPs are uneconomical and involve toxic reagents, hindering their extensive applications in the agricultural sector. In contrast, inspired by biological exemplifications from microbes and plants, their extract and biomass can act as a reducing and capping agent to form NPs without any toxic reagents. NPs synthesized through these bioinspired routes are cost-effective, ecofriendly, and high performing. With the development of nanotechnology, biosynthetic NPs (bioNPs) have been proven to be a substitute strategy for agrochemicals and traditional NPs in heavy-metal remediation of soil, promotion of plant growth, and management of plant disease with less toxicity and higher performance. Therefore, bioinspired synthesis of NPs will be an inevitable trend for sustainable development in agricultural fields. This critical review will demonstrate the bioinspired synthesis of NPs and discuss the influence of bioNPs on agricultural soil, crop growth, and crop diseases compared to chemical NPs or agrochemicals.
Collapse
Affiliation(s)
- Liang Xu
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Center, Guangzhou 510006, China
| | - Zhiwei Zhu
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Center, Guangzhou 510006, China
| | - Da-Wen Sun
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Center, Guangzhou 510006, China
- Food
Refrigeration and Computerized Food Technology (FRCFT), Agriculture
and Food Science Centre, University College
Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|