1
|
Gao X, Lin X, Xie X, Li J, Wu X, Li Y, Kawi S. Modification strategies of heterogeneous catalysts for water-gas shift reactions. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00537e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Featured by high energy density, hydrogen has been deemed as a clean and renewable energy source compared with conventional fossil fuels. Water-gas shift reaction (WGSR) exhibits great potential in the...
Collapse
|
2
|
Pei Q, Qiu G, Yu Y, Wang J, Tan KC, Guo J, Liu L, Cao H, He T, Chen P. Fabrication of More Oxygen Vacancies and Depression of Encapsulation for Superior Catalysis in the Water-Gas Shift Reaction. J Phys Chem Lett 2021; 12:10646-10653. [PMID: 34704756 DOI: 10.1021/acs.jpclett.1c02857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fabrication of sufficient oxygen vacancies and exposure of active sites to reactants are two key factors to obtain high catalytic activity in the water-gas shift (WGS) reaction. However, these two factors are hard to satisfy spontaneously, since the formation of oxygen vacancies and encapsulation of metal nanoparticles are two inherent properties in reducible metal oxide supported catalysts due to the strong metal-support interaction (SMSI) effect. In this work, we find that addition of alkali to an anatase supported Ni catalyst (Ni/TiO2(A)) could well regulate the SMSI to achieve both more oxygen vacancies and depression of encapsulation; therefore, more than 20-fold enhancement in activity is obtained. It is found that the in situ formed titanate species on the catalyst surface is crucial to the formation of oxygen vacancies and depression of encapsulation. Furthermore, the methanation, a common side reaction of the WGS reaction, is successfully suppressed in the whole catalytic process.
Collapse
Affiliation(s)
- Qijun Pei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guanghao Qiu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jintao Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Khai Chen Tan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianping Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lin Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hujun Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Teng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|