1
|
Boggiano HD, Nan L, Grinblat G, Maier SA, Cortés E, Bragas AV. Focusing Surface Acoustic Waves with a Plasmonic Hypersonic Lens. NANO LETTERS 2024; 24:6362-6368. [PMID: 38752764 DOI: 10.1021/acs.nanolett.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Plasmonic nanoantennas have proven to be efficient transducers of electromagnetic to mechanical energy and vice versa. The sudden thermal expansion of these structures after an ultrafast optical pulsed excitation leads to the emission of hypersonic acoustic waves to the supporting substrate, which can be detected by another antenna that acts as a high-sensitivity mechanical probe due to the strong modulation of its optical response. Here, we propose and experimentally demonstrate a nanoscale acoustic lens comprised of 11 gold nanodisks whose collective oscillation at gigahertz frequencies gives rise to an interference pattern that results in a diffraction-limited surface acoustic beam of about 340 nm width, with an amplitude contrast of 60%. Via spatially decoupled pump-probe experiments, we were able to map the radiated acoustic energy in the proximity of the focal area, obtaining a very good agreement with the continuum elastic theory.
Collapse
Affiliation(s)
- Hilario D Boggiano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, 1428 Buenos Aires, Argentina
| | - Lin Nan
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Gustavo Grinblat
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, 1428 Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), 1428 Buenos Aires, Argentina
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Department of Physics, Imperial College London, London SW7 2AZ, U.K
| | - Emiliano Cortés
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Andrea V Bragas
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, 1428 Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), 1428 Buenos Aires, Argentina
| |
Collapse
|
2
|
Imaeda K, Shikama Y, Ushikoshi S, Sakai S, Ryuzaki S, Ueno K. Coherent acoustic vibrations of Au nanoblocks and their modulation by Al2O3 layer deposition. J Chem Phys 2024; 160:144702. [PMID: 38587227 DOI: 10.1063/5.0202690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Coherent acoustic phonons induced in metallic nanostructures have attracted tremendous attention owing to their unique optomechanical characteristics. The frequency of the acoustic phonon vibration is highly sensitive to the material adsorption on metallic nanostructures and, therefore, the acoustic phonon offers a promising platform for ultrasensitive mass sensors. However, the physical origin of acoustic frequency modulation by material adsorption has been partially unexplored so far. In this study, we prepared Al2O3-deposited Au nanoblocks and measured their acoustic phonon frequencies using time-resolved pump-probe measurements. By precisely controlling the thickness of the Al2O3 layer, we systematically investigated the relation between the acoustic phonon frequency and the deposited Al2O3 amounts. The time-resolved measurements revealed that the acoustic breathing modes were predominantly excited in the Au nanoblocks, and their frequencies increased with the increment of the Al2O3 thickness. From the relationship between the acoustic phonon frequency and the Al2O3 thickness, we revealed that the acoustic phonon frequency modulation is attributed to the density change of the whole sample. Our results would provide fruitful information for developing quantitative mass sensing devices based on metallic nanostructures.
Collapse
Affiliation(s)
- Keisuke Imaeda
- Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yuto Shikama
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Shimba Ushikoshi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Satoshi Sakai
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Sou Ryuzaki
- Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Kosei Ueno
- Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
3
|
Lee YM, Kim SE, Park JE. Strong coupling in plasmonic metal nanoparticles. NANO CONVERGENCE 2023; 10:34. [PMID: 37470924 PMCID: PMC10359241 DOI: 10.1186/s40580-023-00383-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
The study of strong coupling between light and matter has gained significant attention in recent years due to its potential applications in diverse fields, including artificial light harvesting, ultraefficient polariton lasing, and quantum information processing. Plasmonic cavities are a compelling alternative of conventional photonic resonators, enabling ultracompact polaritonic systems to operate at room temperature. This review focuses on colloidal metal nanoparticles, highlighting their advantages as plasmonic cavities in terms of their facile synthesis, tunable plasmonic properties, and easy integration with excitonic materials. We explore recent examples of strong coupling in single nanoparticles, dimers, nanoparticle-on-a-mirror configurations, and other types of nanoparticle-based resonators. These systems are coupled with an array of excitonic materials, including atomic emitters, semiconductor quantum dots, two-dimensional materials, and perovskites. In the concluding section, we offer perspectives on the future of strong coupling research in nanoparticle systems, emphasizing the challenges and potentials that lie ahead. By offering a thorough understanding of the current state of research in this field, we aim to inspire further investigations and advances in the study of strongly coupled nanoparticle systems, ultimately unlocking new avenues in nanophotonic applications.
Collapse
Affiliation(s)
- Yoon-Min Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Seong-Eun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Jeong-Eun Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
| |
Collapse
|
4
|
Heryanto H, Siswanto S, Rahmat R, Sulieman A, Bradley DA, Tahir D. Nickel Slag/Laterite Soil and Nickel Slag/Iron Sand Nanocomposites: Structural, Optical, and Electromagnetic Absorption Properties. ACS OMEGA 2023; 8:18591-18602. [PMID: 37273611 PMCID: PMC10233663 DOI: 10.1021/acsomega.3c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/18/2023] [Indexed: 06/06/2023]
Abstract
Efforts to produce microwave absorber materials that are inexpensive and environmentally friendly have become a means of greening the environment. The breakthrough can be focused on industrial waste and natural materials for functional purposes and how to enhance their performance. We successfully synthesized nickel slag/laterite soil (NS/LS) and nickel slag/iron sand (NS/IS) nanocomposites using a simple mechanical alloying technique, and the electromagnetic (EM) wave absorption capacities of the nanocomposites were measured using a vector network analyzer. The structural properties of the nanocomposites were analyzed by X-ray diffraction spectroscopy, where the results of the analysis showed that NS/IS has the largest crystallite size (15.69 nm) and the highest EM wave absorption performance. The optical properties of the nanocomposites were determined from their Fourier transform infrared spectra using the Kramers-Kronig relation. As determined through a quantitative analysis of the optical properties, the distance between the longitudinal and transversal optical phonon wavenumber positions (Δ(LO - TO) = 65 cm-1) is inversely proportional to the reflection loss. The surface morphologies of the nanocomposites were analyzed by scanning electron microscopy, and the particle diameters were observed by binary image and Gaussian distribution analyses. The nanocomposite surface exhibits a graded-like morphology, which indicates multiple reflections of the EM radiation, consequently reducing the EM interference. The best nanocomposite for an attenuated EM wave achieved a reflection loss of -39.14 dB at 5-8 GHz. A low penetration depth has implications for the electrical charge tuning of the storage and composite magnets. Finally, the EM absorption properties of NS/IS and NS/LS indicate a 2-mm-thick environmentally friendly nanocomposite for EM absorption.
Collapse
Affiliation(s)
- Heryanto Heryanto
- Department
of Physics, Hasanuddin University, Makassar 90245, Indonesia
| | - Siswanto Siswanto
- Department
of Statistics, Hasanuddin University, Makassar 90245, Indonesia
| | - Roni Rahmat
- Department
of Physics, Hasanuddin University, Makassar 90245, Indonesia
| | - Abdelmoneim Sulieman
- Department
of Radiology and Medical Imaging Sciences, College of Applied Medical
Sciences, Prince Sattam bin Abdulaziz University, P.O. Box 422, Alkharj 11942, Saudi Arabia
| | - David A. Bradley
- Centre
for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
- Centre
for Applied Physics and Radiation Technologies, School of Engineering
and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
| | - Dahlang Tahir
- Department
of Physics, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
5
|
Acoustic Vibration Modes of Gold–Silver Core–Shell Nanoparticles. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bimetallic Au/Ag core–shell cuboid nanoparticles (NPs) exhibit a complex plasmonic response dominated by a dipolar longitudinal mode and higher-order transverse modes in the near-UV, which may be exploited for a range of applications. In this paper, we take advantage of the strong signature of these modes in the NP ultrafast transient optical response, measured by pump-probe transient absorption (TA) spectroscopy, to explore the NP vibrational landscape. The fast Fourier transform analysis of the TA dynamics reveals specific vibration modes in the frequency range 15–150 GHz, further studied by numerical simulations based on the finite element method. While bare Au nanorods exhibit extensional and breathing modes, the bimetallic NPs undergo more complex motions, involving the displacement of facets, edges and corners. The amplitude and frequency of these modes are shown to depend on the Ag shell thickness, as the silver load modifies the NP aspect ratio and mass. Moreover, the contributions of the vibrational modes to the experimental TA spectra are shown to vary with the probe laser wavelength at which the signal is monitored. Using the combined simulations of the NP elastic and optical properties, we elucidate this influence by analyzing the effect of the mechanisms involved in the acousto-plasmonic coupling.
Collapse
|