1
|
Xia J, Fu R, Li Z, Ding Y, Zhao H, Ye D. Graphyne-supported manganese single-atom nanozyme sensor array for bisphenol identification. Talanta 2024; 285:127326. [PMID: 39647278 DOI: 10.1016/j.talanta.2024.127326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Bisphenols, as common industrial raw materials, are widely used in food packaging such as plastics. However, their migration and residue may affect the hormone secretion of the human body and then lead to health problems. Therefore, a low-cost, rapid and simple detection method that can simultaneously detect multiple bisphenols is very necessary. In this work, two types of manganese single-atom nanozymes with excellent peroxidase-like activity were synthesized with graphyne as a support. A high-throughput colorimetric sensor array was constructed using three types of nanozymes (Mn-GY, Mn-GY-2N, GY-2N) to distinguish various bisphenols. Due to the absorption of bisphenol molecules on the surface of nanozymes, the activity of nanozymes decreases differently, when different bisphenols are added to the catalytic system. The results proved that the prepared sensor had good linear relationships at both low and high concentrations for determination of five bisphenols. The LODs of BPA, BPS, BPF, BPAF, and Diphenolic Acid were 0.443, 0.280, 0.277, 0.424, and 0.326 μM respectively. Compared with traditional sensors, the sensor array can simultaneously detect multiple analytes with high throughput, showing great advantage in dealing with complex samples. Combined with machine learning algorithms, five bisphenols can be successfully identified by the obtained array data. The sensor array also demonstrated excellent performance in the detection of both mixed samples and real samples. This high-throughput colorimetric sensor array achieves accurate and sensitive detection of bisphenol substances, providing new means and ideas for enhancing food safety. At the same time, the simple and rapid identification of structurally similar compounds demonstrates its potential for more precise analysis, providing possibilities for future development.
Collapse
Affiliation(s)
- Jianing Xia
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Ruixue Fu
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Zhen Li
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yaping Ding
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hongbin Zhao
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Daixin Ye
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
2
|
Rajeev A, Yin L, Kalambate PK, Khabbaz MB, Trinh B, Kamkar M, Mekonnen TH, Tang S, Zhao B. Nano-enabled smart and functional materials toward human well-being and sustainable developments. NANOTECHNOLOGY 2024; 35:352003. [PMID: 38768585 DOI: 10.1088/1361-6528/ad4dac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Fabrication and operation on increasingly smaller dimensions have been highly integrated with the development of smart and functional materials, which are key to many technological innovations to meet economic and societal needs. Along with researchers worldwide, the Waterloo Institute for Nanotechnology (WIN) has long realized the synergetic interplays between nanotechnology and functional materials and designated 'Smart & Functional Materials' as one of its four major research themes. Thus far, WIN researchers have utilized the properties of smart polymers, nanoparticles, and nanocomposites to develop active materials, membranes, films, adhesives, coatings, and devices with novel and improved properties and capabilities. In this review article, we aim to highlight some of the recent developments on the subject, including our own research and key research literature, in the context of the UN Sustainability development goals.
Collapse
Affiliation(s)
- Ashna Rajeev
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lu Yin
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pramod K Kalambate
- University of Waterloo, Department of Chemistry, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mahsa Barjini Khabbaz
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Binh Trinh
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Milad Kamkar
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Tizazu H Mekonnen
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Institute for Polymer Research, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Shirley Tang
- University of Waterloo, Department of Chemistry, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Boxin Zhao
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Institute for Polymer Research, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
3
|
Li W, Sun J, Xin Y, Han Y, Sun Y, Li A, Wang Z. A novel copper-based nanozyme: fabrication and application for colorimetric detection of resveratrol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6252-6258. [PMID: 37955250 DOI: 10.1039/d3ay01666h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
A novel nanozyme (urea@Cu-NF) was synthesized by self-assembly of urea and copper phosphate with urea as plasticizer. Urea@Cu-NF exhibited excellent peroxidase-like activity with the ability to oxidize TMB in the presence of H2O2. However, its peroxidase-like activity could be inhibited by resveratrol, leading to an absorption decrease in the intensity of oxTMB. Based on this phenomenon, a colorimetric method was designed for resveratrol detection. The colorimetric reaction could be completed within 20 min with a linear range of 1-120 μM. The limit of detection (LOD) of resveratrol is 0.43 μM. Our experimental results demonstrate that urea@Cu-NF has enormous potential to function as a cheap and accurate quality detection tool.
Collapse
Affiliation(s)
- Wanxin Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun 130023, P. R. China.
| | - Jiaxin Sun
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun 130023, P. R. China.
| | - Yao Xin
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun 130023, P. R. China.
| | - Yu Han
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun 130023, P. R. China.
| | - Yanyang Sun
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun 130023, P. R. China.
| | - Aijun Li
- College of Physics, Jilin University, Changchun 130033, P. R. China.
| | - Zhi Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun 130023, P. R. China.
| |
Collapse
|
4
|
Fu R, Ma Z, Zhao H, Jin H, Tang Y, He T, Ding Y, Zhang J, Ye D. Research Progress in Iron-Based Nanozymes: Catalytic Mechanisms, Classification, and Biomedical Applications. Anal Chem 2023. [PMID: 37438259 DOI: 10.1021/acs.analchem.3c01005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Natural enzymes are crucial in biological systems and widely used in biology and medicine, but their disadvantages, such as insufficient stability and high-cost, have limited their wide application. Since Fe3O4 nanoparticles were found to show peroxidase-like activity, researchers have designed and developed a growing number of nanozymes that mimic the activity of natural enzymes. Nanozymes can compensate for the defects of natural enzymes and show higher stability with lower cost. Iron, a nontoxic and low-cost transition metal, has been used to synthesize a variety of iron-based nanozymes with unique structural and physicochemical properties to obtain different enzymes mimicking catalytic properties. In this perspective, catalytic mechanisms, activity modulation, and their recent research progress in sensing, tumor therapy, and antibacterial and anti-inflammatory applications are systematically presented. The challenges and perspectives on the development of iron-based nanozymes are also analyzed and discussed.
Collapse
Affiliation(s)
- Ruixue Fu
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Zijian Ma
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Hongbin Zhao
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Huan Jin
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ya Tang
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ting He
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yaping Ding
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jiujun Zhang
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Daixin Ye
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
5
|
Wang M, Zhu P, Liu S, Chen Y, Liang D, Liu Y, Chen W, Du L, Wu C. Application of Nanozymes in Environmental Monitoring, Management, and Protection. BIOSENSORS 2023; 13:314. [PMID: 36979526 PMCID: PMC10046694 DOI: 10.3390/bios13030314] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Nanozymes are nanomaterials with enzyme-like activity, possessing the unique properties of nanomaterials and natural enzyme-like catalytic functions. Nanozymes are catalytically active, stable, tunable, recyclable, and versatile. Therefore, increasing attention has been paid in the fields of environmental science and life sciences. In this review, we focused on the most recent applications of nanozymes for environmental monitoring, environmental management, and environmental protection. We firstly introduce the tuning catalytic activity of nanozymes according to some crucial factors such as size and shape, composition and doping, and surface coating. Then, the application of nanozymes in environmental fields are introduced in detail. Nanozymes can not only be used to detect inorganic ions, molecules, organics, and foodborne pathogenic bacteria but are also involved in the degradation of phenolic compounds, dyes, and antibiotics. The capability of nanozymes was also reported for assisting air purification, constructing biofuel cells, and application in marine antibacterial fouling removal. Finally, the current challenges and future trends of nanozymes toward environmental fields are proposed and discussed.
Collapse
Affiliation(s)
- Miaomiao Wang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Ping Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Shuge Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Yating Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Dongxin Liang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yage Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Wei Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| |
Collapse
|
6
|
Wang S, Wang X, Du B, Jin Y, Ai W, Zhang G, Zhou T, Wang F, Zhang Z. Hydrogen peroxide-assisted and histidine-stabilized copper-containing nanozyme for efficient degradation of various organic dyes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122084. [PMID: 36379087 DOI: 10.1016/j.saa.2022.122084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes have potential applications in many fields, and a novel copper-containing nanozyme with highly dispersity and uniformity was self-assembled for efficient degradation of various organic dyes in this work. In the nanozyme, histidine was used to coordinate with copper ions, and hydrogen peroxide was prone to Fenton-like reaction to generate hydroxylated copper oxide intermediates. The nanozyme showed good peroxidase-like activity, and also had the ability to catalyze the degradation of various organic dyes efficiently with good storage and recycling ability. Furthermore, the degradation kinetics and mechanism of nanozyme had been further studied, and found that hydroxyl radical and singlet oxygen play vital roles in the catalytic degradation process. Meanwhile, this nanozyme can efficiently degrade two organic compounds at the same time, and this system is capable of dealing with complex practical application scenarios where wastewater contains a variety of organic pollutants.
Collapse
Affiliation(s)
- Siqi Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiufeng Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Bingyuan Du
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yao Jin
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenhui Ai
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Guodong Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ting Zhou
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhiqing Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
7
|
Lee G, Kim C, Kim D, Hong C, Kim T, Lee M, Lee K. Multibranched Au-Ag-Pt Nanoparticle as a Nanozyme for the Colorimetric Assay of Hydrogen Peroxide and Glucose. ACS OMEGA 2022; 7:40973-40982. [PMID: 36406559 PMCID: PMC9670713 DOI: 10.1021/acsomega.2c04129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/21/2022] [Indexed: 05/19/2023]
Abstract
Many studies have recently produced artificial enzymes with metal nanoparticles (NPs) to overcome the limitations of natural enzymes, such as low stability, high cost, and storage problems. In particular, gold NPs exhibit peroxidase-like activity and are strongly influenced by external parameters, such as pH, temperature, size, shape, and functional layer, which change the enzyme activity. Here, chitosan-capped multibranched Au-Ag-Pt NPs (CCNPs) that mimic peroxidase were synthesized using various peroxidase-mimicking strategies. The results demonstrated that enzyme activity sequentially increased because of the multibranched Au-Ag NPs coated with Pt and chitosan. The enzyme activity of the particle was evaluated through the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), which causes a color change into blue. This change was observable with the naked eye and could be used practically. The color change depended on the concentration of hydrogen peroxide (H2O2), and it was shown that the CCNPs could be applied to measure H2O2 with a limit of detection (LOD) of 0.054 mM. Furthermore, with glucose oxidase, the CCNPs can be used for glucose detection with an LOD of 0.289 mM. Also, the potential of the CCNP application in human serum was shown through the serum test. Thus, this study suggested the utilization of the multibranched Au-Ag-Pt NPs that mimic the peroxidase activity of natural enzymes and the possibility of application in various biological analyses.
Collapse
Affiliation(s)
- Gyubok Lee
- Department
of Applied Bioengineering, Graduate School of Convergence Science
and Technology, Seoul National University, Seoul08826, Korea
| | - Changheon Kim
- Program
in Nanoscience and Technology, Graduate School of Convergence Science
and Technology, Seoul National University, Seoul08826, Korea
| | - Dongwoo Kim
- Department
of Applied Bioengineering, Graduate School of Convergence Science
and Technology, Seoul National University, Seoul08826, Korea
| | - Changgi Hong
- Department
of Applied Bioengineering, Graduate School of Convergence Science
and Technology, Seoul National University, Seoul08826, Korea
| | - Taeyong Kim
- Department
of Materials Science and Engineering, College of Engineering, Seoul National University, Seoul08826, Korea
| | - Moongoo Lee
- Department
of Dentistry, School of Dentistry, Seoul
National University, Seoul08826, Korea
| | - Kangwon Lee
- Department
of Applied Bioengineering, Graduate School of Convergence Science
and Technology, Seoul National University, Seoul08826, Korea
- Research
Institute for Convergence Science, Seoul
National University, Seoul08826, Korea
| |
Collapse
|
8
|
Dadigala R, Bandi R, Alle M, Park CW, Han SY, Kwon GJ, Lee SH. Effective fabrication of cellulose nanofibrils supported Pd nanoparticles as a novel nanozyme with peroxidase and oxidase-like activities for efficient dye degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129165. [PMID: 35739705 DOI: 10.1016/j.jhazmat.2022.129165] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Nanozyme-based dye degradation methods are promising for the remediation of water pollution. Though Pd nanoparticles (PdNPs) are known to act as nanozymes, their dye degradation capability has not been investigated. Low nanozyme activities, easy aggregation, difficulties in recovery and reuse are the major challenges in achieving this. For the first time, cellulose nanofibrils-supported PdNPs (PdNPs/PCNF) as a novel nanozyme with good peroxidase and oxidase-mimicking activities and easy recyclability is explored for dye degradation. An efficient and rapid method of PdNPs/PCNF preparation was demonstrated by adjusting the pH and microwave irradiation. Enzyme kinetic studies revealed good kinetic parameters and specific activities of 415 and 277 U/g for peroxidase and oxidase, respectively. PdNPs/PCNF offered 99.64% degradation of methylene blue within 12 min (0.468 min-1) with 0.4 M H2O2 at pH 5.0. Mechanistic studies revealed the involvement of hydroxyl and superoxide radicals. Owing to the network-like structure of PCNF, films and foams were prepared, their dye degradation potentials were compared, and recyclability was tested. Successful degradation of mixed dye solutions and spiked real water samples was achieved and a continuous flow method was demonstrated using a foam-packed column.
Collapse
Affiliation(s)
- Ramakrishna Dadigala
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chan-Woo Park
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Song-Yi Han
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gu-Joong Kwon
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Institute of Inclusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung-Hwan Lee
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
9
|
Fabrication of a novel nano-biosensor for efficient colorimetric determination of uric acid. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Bej S, Ghosh M, Das R, Banerjee P. Evaluation of nanomaterials-grafted enzymes for application in contaminants degradation: Need of the hour with proposed IoT synchronized nanosensor fit sustainable clean water technology in en masse. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Jin H, Ye D, Shen L, Fu R, Tang Y, Jung JCY, Zhao H, Zhang J. Perspective for Single Atom Nanozymes Based Sensors: Advanced Materials, Sensing Mechanism, Selectivity Regulation, and Applications. Anal Chem 2022; 94:1499-1509. [PMID: 35014271 DOI: 10.1021/acs.analchem.1c04496] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanozymes are a kind of nanomaterial mimicking enzyme catalytic activity, which has aroused extensive interest in the fields of biosensors, biomedicine, and climate and ecosystems management. However, due to the complexity of structures and composition of nanozymes, atomic scale active centers have been extensively investigated, which helps with in-depth understanding of the nature of the biocatalysis. Single atom nanozymes (SANs) cannot only significantly enhance the activity of nanozymes but also effectively improve the selectivity of nanozymes owing to the characteristics of simple and adjustable coordination environment and have been becoming the brightest star in the nanozyme spectrum. The SANs based sensors have also been widely investigated due to their definite structural features, which can be helpful to study the catalytic mechanism and provide ways to improve catalytic activity. This perspective presents a comprehensive understanding on the advances and challenges on SANs based sensors. The catalytic mechanisms of SANs and then the sensing application from the perspectives of sensing technology and sensor construction are thoroughly analyzed. Finally, the major challenges, potential future research directions, and prospects for further research on SANs based sensors are also proposed.
Collapse
Affiliation(s)
- Huan Jin
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Daixin Ye
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Lihua Shen
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ruixue Fu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ya Tang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Joey Chung-Yen Jung
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Hongbin Zhao
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|