1
|
Gopika R, Arun K, Ramesan MT. Development of High-Performance Polyindole/Silicon Carbide Nanocomposites for Optoelectrical and Sensing Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8046-8058. [PMID: 38586963 DOI: 10.1021/acs.langmuir.3c04001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
In this study, silicon carbide (SiC)-reinforced polyindole (PIn) nanocomposites were prepared by a simple in situ polymerization method. The successful reinforcement of the nanofiller within the host matrix was characterized using different analytical techniques. The chemical bonding of SiC in the polymer was identified by the characteristic peak around 800 cm1 using Fourier transform infrared spectroscopy (FT-IR). The increment in intensity of the absorption and enhanced crystallinity of the samples upon the addition of nanofillers were analyzed using UV-vis spectroscopy and X-ray diffraction (XRD). The prepared specimens showed reduced optical bandgap energy (3.188 eV) and Urbach energy (2.315 meV) with an improved refractive index (2.348). The effect of nanoparticles on the surface morphology of the nanocomposites was studied using scanning electron microscopy (SEM), and a uniform dispersion of fillers in the matrix was found for PInSiC7. A high-resolution transmission electron microscopy (HR-TEM) revealed the shape and average particle size of the sample. X-ray electron spectroscopy (XPS) measurements confirmed the formation of the nanocomposite by exhibiting the presence of all elements in the corresponding spectra. The thermal stability and glass transition temperature of the nanocomposites were significantly improved with the addition of SiC. The temperature-dependent AC conductivity, dielectric parameters, complex impedance, and electrical modulus were also evaluated using an impedance analyzer. The increased electrical characteristics of the PInSiC7 sample can be attributed to the uniform spread and strong synergetic interaction of SiC with PIn. The results thus showcased the potential of the samples for use in optical and energy storage applications. This study was also extended to understand the ammonia sensing properties, which make it possible to design and develop gas sensors using the PInSiC nanocomposites.
Collapse
Affiliation(s)
- R Gopika
- Centre for Polymer Science and Technology, Department of Chemistry, University of Calicut, Calicut University P.O., Malappuram, Kerala 673 635, India
| | - K Arun
- Centre for Polymer Science and Technology, Department of Chemistry, University of Calicut, Calicut University P.O., Malappuram, Kerala 673 635, India
| | - M T Ramesan
- Centre for Polymer Science and Technology, Department of Chemistry, University of Calicut, Calicut University P.O., Malappuram, Kerala 673 635, India
| |
Collapse
|
2
|
Hou Y, Han P, Li H, Zhang S, Qin M, Zhang N, Fu B, Mao R, Ge S. Bifunctional 3D POM-based coordination polymers for improved pseudocapacitance and catalytic oxidation performance. Dalton Trans 2024; 53:1541-1550. [PMID: 38164075 DOI: 10.1039/d3dt03650b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Developing novel high-efficiency supercapacitors as energy storage devices to solve the energy crisis is of vital significance. Meanwhile, designing highly active and selective oxidation catalysts for various sulfides is desirable but still a big challenge. To work out these problems, three novel 3D POM-based coordination polymers (POMCPs), formulated as [{Ag6(pytz)4}{SiMo12O40}] (1), [{Cu3(pytz)4}{SiMo12O40}]·5.5H2O (2) and [{Cu6(pytz)6}{SiMo12O40}]·2H2O (3) (pytz = 4-(5-(4-pyridyl)-1H-tetrazole)), are successfully prepared via a one-step synthetic strategy by changing different temperatures under hydrothermal or solvothermal conditions. In compounds 1 and 2, {SiMo12}, as 9-capped and 2-capped polyoxoanions, are engaged among the 2D Ag/Cu-organic sheets to generate the novel 3D POM-based coordination polymers. In addition, 1D Cu-organic chains are combined with 3-capped {SiMo12} polyoxoanions to construct 2D POM-based coordination polymers in 3. To our delight, as electrode materials for supercapacitors, the three compounds exhibit excellent specific capacitances of 261.76 F g-1, 248.82 F g-1 and 156.47 F g-1 at 0.5 A g-1, respectively. Besides, they can effectively and selectively catalyze the oxidation of various sulfides to sulfoxides.
Collapse
Affiliation(s)
- Yujiao Hou
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Peilin Han
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Hao Li
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Shixing Zhang
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Mengge Qin
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Nan Zhang
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Bingbing Fu
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Ruitao Mao
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Suxiang Ge
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| |
Collapse
|
3
|
“Perfect match” of the carbazole-based conducting polymer and polyoxometalate nanocomposite components for enhanced optical and electrical properties. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
4
|
Gunasekaran R, Charles J. Synthesis, structural, morphological and optical analyses of new Prussian blue, ruthenium oxide and polyindole (PIn-PB-RuO2) nanocomposite. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Shokry A, Elshaer A, El Nady J, Ebrahim S, Khalil M. High energy density and specific capacity for supercapacitor based on electrochemical synthesized polyindole. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Wang G, Guo S, Wu Y, Wu J, Zhang F, Li L, Zhang M, Yao C, Gómez-García CJ, Wang T, Zhang Y, Chen T, Ma H. POMCPs with Novel Two Water-Assisted Proton Channels Accommodated by MXenes for Asymmetric Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202087. [PMID: 35729064 DOI: 10.1002/smll.202202087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/05/2022] [Indexed: 06/15/2023]
Abstract
To develop high-performance supercapacitors, the negative electrode is at present viewed as one of the most challenging tasks for obtaining the next-generation of energy storage devices. Therefore, in this study, a polyoxometalate-based coordination polymer [Zn(itmb)3 H2 O][H2 SiW12 O40 ]·5H2 O (1) is designed and prepared by a simple hydrothermal method for constructing a high-capacity negative electrode. Polymer 1 has two water-assisted proton channels, which are conducive to enhancing the electrical conductivity and storage capacity. Then, MXene Ti3 C2 Tx is chosen to accommodate coordination polymer 1 as the interlayer spacers to improve the conductivity and cycling stability of 1, while preventing the restacking of MXene. Expectedly, the produced composite electrode 1@Ti3 C2 Tx shows an excellent specific capacitance (1480.1 F g-1 at 5 A g-1 ) and high rate performance (a capacity retention of 71.5% from 5 to 20 A g-1 ). Consequently, an asymmetric supercapacitor device is fabricated using 1@Ti3 C2 Tx as the negative electrode and celtuce leaves-derived carbon paper as the positive electrode, which demonstrates ultrahigh energy density of 32.2 Wh kg-1 , and power density 2397.5 W kg-1 , respectively. In addition, the ability to illuminate a red light-emitting diode for several minutes validates its feasibility for practical application.
Collapse
Affiliation(s)
- Guangning Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Siyu Guo
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Yang Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Jiaqi Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Feng Zhang
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Lu Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Mingyi Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Chengbao Yao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Carlos J Gómez-García
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, C/Catedrático José Beltrán, Paterna, Valencia, 46980, Spain
| | - Tianyang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Yajing Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Tingting Chen
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Huiyuan Ma
- Key Laboratory of Green Chemical Engineering and Technology, School of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| |
Collapse
|
7
|
Aydoğdu Tığ G, Zeybek B. Gold Nanoparticles‐electrochemically Reduced Graphene Oxide/Poly(indole‐5‐carboxylic acid) Nanocomposite for Electrochemical Non‐enzymatic Sensing of Hydrogen Peroxide. ELECTROANAL 2022. [DOI: 10.1002/elan.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gözde Aydoğdu Tığ
- Ankara University Faculty of Science Department of Chemistry Ankara 06100 Turkey
| | - Bülent Zeybek
- Kütahya Dumlupınar University Faculty of Science and Arts Department of Chemistry Kütahya 43100 Turkey
| |
Collapse
|
8
|
Asymmetric polyoxometalate-polypyrrole composite electrode material for electrochemical energy storage supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115856] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Wang X, Li H, Lin J, Wang C, Wang XL. Capped Keggin Type Polyoxometalate-Based Inorganic-Organic Hybrids Involving In Situ Ligand Transformation as Supercapacitors and Efficient Electrochemical Sensors for Detecting Cr(VI). Inorg Chem 2021; 60:19287-19296. [PMID: 34855395 DOI: 10.1021/acs.inorgchem.1c03097] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To construct polyoxometalate-based complexes as electrode materials for supercapacitors and electrochemical sensors, we intentionally used in situ ligand transformation during the reaction. Two complexes based on polyoxometalates capped by zinc ions, H{Zn4(DIBA)4[(DIBA)(HPO2)]2(α-PMoVI8MoV4O40Zn2)} (1) and [ε-PMoV8MoVI4O37(OH)3Zn4(HDBIBA)2]·6H2O (2) [DIBA = 3,5-di(1H-imidazol-1-yl)benzoic acid, and DBIBA = 3,5-bis(1H-benzoimidazol-1-yl)benzoic acid], have been prepared successfully. The DIBA and DBIBA ligands were generated in situ from initial materials 3,5-di(1H-imidazol-1-yl)benzonitrile and 3,5-di(1H-benzoimidazol-1-yl)benzonitrile. The three-dimensional structure of 1 consisted of two-dimensional interpenetrating layers and polyoxometalate-based chains composed of bicapped α-PMo12Zn2 polyoxoanions and phosphite-modified DIBA ligands. In 2, a kind of tetracapped ε-PMo12Zn4 polyoxoanion exists, which was further linked by DBIBA ligands into a one-dimensional chain. Two complexes could be employed as not only electrode materials for supercapacitors with specific capacitances of 171.17 F g-1 for 1 and 146.77 F g-1 for 2 at 0.5 A g-1 but also efficient electrochemical sensors for detecting Cr(VI) with excellent limits of detection of 0.026 μM for 1 and 0.035 μM for 2, which represents a hopeful approach for exploiting polyoxometalate-based complexes as supercapacitor and electrochemical sensor materials.
Collapse
Affiliation(s)
- Xiang Wang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| | - Huan Li
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| | - Jiafeng Lin
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| | - Chenying Wang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| | - Xiu-Li Wang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| |
Collapse
|
10
|
A Review of Supercapacitors: Materials Design, Modification, and Applications. ENERGIES 2021. [DOI: 10.3390/en14227779] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supercapacitors (SCs) have received much interest due to their enhanced electrochemical performance, superior cycling life, excellent specific power, and fast charging–discharging rate. The energy density of SCs is comparable to batteries; however, their power density and cyclability are higher by several orders of magnitude relative to batteries, making them a flexible and compromising energy storage alternative, provided a proper design and efficient materials are used. This review emphasizes various types of SCs, such as electrochemical double-layer capacitors, hybrid supercapacitors, and pseudo-supercapacitors. Furthermore, various synthesis strategies, including sol-gel, electro-polymerization, hydrothermal, co-precipitation, chemical vapor deposition, direct coating, vacuum filtration, de-alloying, microwave auxiliary, in situ polymerization, electro-spinning, silar, carbonization, dipping, and drying methods, are discussed. Furthermore, various functionalizations of SC electrode materials are summarized. In addition to their potential applications, brief insights into the recent advances and associated problems are provided, along with conclusions. This review is a noteworthy addition because of its simplicity and conciseness with regard to SCs, which can be helpful for researchers who are not directly involved in electrochemical energy storage.
Collapse
|
11
|
Recent Advances in Graphene and Conductive Polymer Composites for Supercapacitor Electrodes: A Review. CRYSTALS 2021. [DOI: 10.3390/cryst11080947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supercapacitors (SCs) have generated a great deal of interest regarding their prospects for application in energy storage due to their advantages such as long life cycles and high-power density. Graphene is an excellent electrode material for SCs due to its high electric conductivity and highly specific surface area. Conductive polymers (CPs) could potentially become the next-generation SC electrodes because of their low cost, facile synthesis methods, and high pseudocapacitance. Graphene/CP composites show conspicuous electrochemical performance when used as electrode materials for SCs. In this article, we present and summarize the synthesis and electrochemical performance of graphene/CP composites for SCs. Additionally, the method for synthesizing electrode materials for better electrochemical performance is discussed.
Collapse
|