1
|
Wang Z, Jia X, Sun W, Wang J, Li C, Zhao Q, Li Y, Tian S. Persulfate-based remediation of organic-contaminated soil: Insight into the impacts of natural iron ions and humic acids with complexation/redox functionality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167177. [PMID: 37730037 DOI: 10.1016/j.scitotenv.2023.167177] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/19/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
The use of persulfate (PDS) for in-situ chemical oxidation of organic contaminants in soils has garnered significant interest. However, the presence of naturally occurring iron-containing substances and humic acid (HA) in environmental compartments can potentially influence the effectiveness of soil remediation. Thus, this study aimed to investigate the role of key functional groups (adjacent phenolic hydroxyl (Ar-OH) and carboxyl groups (-COOH)) in HA that interact with iron. Modified HAs were used to confirm the significance of these moieties in iron interaction. Additionally, the mechanism by which specific functional groups affect Fe complexation and redox was explored through contaminant degradation experiments, pH-dependent investigations, HA by-products analysis, and theoretical calculations using six specific hydroxybenzoic acids as HA model compounds. The results showed a strong positive correlation between accessible Ar-OH and -COOH groups and Fe3+/Fe2+ redox. This was attributed to HA undergoing a conversion process to a semiquinone-containing radical form, followed by a quinone-containing intermediate, while Fe3+ acted as an electron shuttle between HA and PDS, with Fe3+ leaching facilitated by generated H+ ions. Although the stability of HA-Fe3+ complexes with -COOH as the primary binding sites was slightly higher at neutral/alkaline conditions compared to acidic conditions, the buffering properties of the soil and acidification of the PDS solution played a greater role in determining the Ar-OH groups as the primary binding site in most cases. Therefore, the availability of Ar-OH groups on HA created a trade-off between accelerated Fe3+/Fe2+ redox and quenching reactions. Appropriate HA and iron contents were found to favor PDS activation, while excessive HA could lead to intense competition for reactive oxygen species (ROS), inhibiting pollutant degradation in soil. The findings provide valuable insights into the interaction of HA and Fe-containing substances in persulfate oxidation, offering useful information for the development of in-situ remediation strategies for organic-contaminated soil.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Xiaolei Jia
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Wei Sun
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Jianfei Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Chen Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China.
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| |
Collapse
|
2
|
Senthilkumar A, Ganeshbabu M, Karuppiah Lazarus J, Sevugarathinam S, John J, Ponnusamy SK, Velayudhaperumal Chellam P, Sillanpää M. Thermal and Radiation Based Catalytic Activation of Persulfate Systems in the Removal of Micropollutants: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Abiramasundari Senthilkumar
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Madhubala Ganeshbabu
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Jesintha Karuppiah Lazarus
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Shalini Sevugarathinam
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Juliana John
- Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli 620015, India
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | | | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus, Denmark
| |
Collapse
|