1
|
Weber JL, Mejía CH, de Jong KP, de Jongh PE. Recent advances in bifunctional synthesis gas conversion to chemicals and fuels with a comparison to monofunctional processes. Catal Sci Technol 2024; 14:4799-4842. [PMID: 39206322 PMCID: PMC11347923 DOI: 10.1039/d4cy00437j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024]
Abstract
In order to meet the climate goals of the Paris Agreement and limit the potentially catastrophic consequences of climate change, we must move away from the use of fossil feedstocks for the production of chemicals and fuels. The conversion of synthesis gas (a mixture of hydrogen, carbon monoxide and/or carbon dioxide) can contribute to this. Several reactions allow to convert synthesis gas to oxygenates (such as methanol), olefins or waxes. In a consecutive step, these products can be further converted into chemicals, such as dimethyl ether, short olefins, or aromatics. Alternatively, fuels like gasoline, diesel, or kerosene can be produced. These two different steps can be combined using bifunctional catalysis for direct conversion of synthesis gas to chemicals and fuels. The synergistic effects of combining two different catalysts are discussed in terms of activity and selectivity and compared to processes based on consecutive reaction with single conversion steps. We found that bifunctional catalysis can be a strong tool for the highly selective production of dimethyl ether and gasoline with high octane numbers. In terms of selectivity bifunctional catalysis for short olefins or aromatics struggles to compete with processes consisting of single catalytic conversion steps.
Collapse
Affiliation(s)
- J L Weber
- Materials Chemistry and Catalysis, Universiteit Utrecht Universiteitsweg 99 Utrecht Netherlands
| | - C Hernández Mejía
- Materials Chemistry and Catalysis, Universiteit Utrecht Universiteitsweg 99 Utrecht Netherlands
| | - K P de Jong
- Materials Chemistry and Catalysis, Universiteit Utrecht Universiteitsweg 99 Utrecht Netherlands
| | - P E de Jongh
- Materials Chemistry and Catalysis, Universiteit Utrecht Universiteitsweg 99 Utrecht Netherlands
| |
Collapse
|
2
|
Chen Y, Han S, Pan X, Jiao F, Liu W, Pan Y, Bao X. Visualization of the Active Sites of Zinc-Chromium Oxides and the CO/H 2 Activation Mechanism in Direct Syngas Conversion. J Am Chem Soc 2024; 146:1887-1893. [PMID: 38205793 DOI: 10.1021/jacs.3c07332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Despite wide studies demonstrating the versatility of the metal oxide-zeolite (OXZEO) catalyst concept to tackle the selectivity challenge in syngas chemistry, the active sites of metal oxides and the mechanism of CO/H2 activation remain to be elucidated. Herein, we demonstrate experimentally the role of Cr in zinc-chromium oxides and unveil visually, for the first time, the active sites for CO activation employing scanning transmission electron microscopy-electron energy loss spectroscopy using the volumetric density of surface carbon species as a descriptor. The ZnCr2O4 spinel surface with atomic ZnOx overlayer is the most active site for C-O bond dissociation, particularly at the narrow ZnCr2O4(110) facets constrained between the (311) and (111) facets, followed by the Cr-doped wurtzite ZnO surface. In comparison, the surfaces of ZnCr2O4 with aggregated ZnOx overlayers, pure ZnO, and the stoichiometric ZnCr2O4 exhibit a significantly lower activity. In situ synchrotron-based vacuum ultraviolet photoionization mass spectrometric study on different temperature programmed surface reactions with isotopes of C18O, 13CO, and D2 validates direct CO dissociation over ZnCrn oxides in CO, forming CH2 and further to hydrocarbons if H2 is present and CH2CO intermediates in syngas. The activity of CO dissociation and hydrogenation over ZnCrn oxides correlates well with the syngas-to-light-olefins activity of ZnCrn-SAPO-18 composite catalysts as a function of the Cr/Zn ratio.
Collapse
Affiliation(s)
- Yuxiang Chen
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaobo Han
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Xiulian Pan
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Feng Jiao
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Wei Liu
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Yang Pan
- Synchrotron Radiation Laboratory, University of Science and Technology of China, Jinzhai Road 96, Hefei 230029, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
3
|
Kull T, Wiesmann T, Wilmsen A, Purcel M, Muhler M, Lohmann H, Zeidler-Fandrich B, Apfel UP. Influence of the ZnCrAl Oxide Composition on the Formation of Hydrocarbons from Syngas. ACS OMEGA 2022; 7:42994-43005. [PMID: 36467945 PMCID: PMC9713791 DOI: 10.1021/acsomega.2c05225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
The conversion of syngas into value-added hydrocarbons gains increasing attention due to its potential to produce sustainable platform chemicals from simple starting materials. Along this line, the "OX-ZEO" process that combines a methanol synthesis catalyst with a zeolite, capable of catalyzing the methanol-to-hydrocarbon reaction, was found to be a suitable alternative to the classical Fischer-Tropsch synthesis. Hitherto, understanding the mechanism of the OX-ZEO process and simultaneously optimizing the CO conversion and the selectivity toward a specific hydrocarbon remains challenging. Herein, we present a comparison of a variety of ZnCrAl oxides with different metal ratios combined with a H-ZSM-5 zeolite for the conversion of syngas to hydrocarbons. The effect of aluminum on the catalytic activity was investigated for ZnCrAl oxides with a Zn/Cr ratio of 4:1, 1:1, and 1:2. The product distribution and CO conversion were found to be strongly influenced by the Zn/Cr/Al ratio. Although a ratio of Zn/Cr of 1:2 was best to produce lower olefins and aromatics, with aromatic selectivities of up to 37%, catalysts with a 4:1 ratio revealed high paraffin selectivity up to 52%. Notably, a distinct effect of aluminum in the oxide lattice on the catalytic activity and product selectivity was observed, as a higher Al content leads to a lower CO conversion and a changed product spectrum. We provide additional understanding of the influence of different compositions of ZnCrAl oxides on their surface properties and the catalytic activity in the OX-ZEO process. Furthermore, the variation of the zeolite component supports the important role of the channel topology of the porous support material for the hydrocarbon production. In addition, variation of the gas hourly space velocity showed a correlation of contact time, CO conversion, and hydrocarbon selectivity. At a gas hourly space velocity of 4200 mL/gcat h, CO conversion as high as 44% along with a CO2 selectivity of 42% and a lower paraffin (C2 0-C4 0) selectivity of 41% was observed.
Collapse
Affiliation(s)
- Tobias Kull
- Inorganic
Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Thomas Wiesmann
- Fraunhofer
UMSICHT, Osterfelder
Straße 3, D-46047 Oberhausen, Germany
| | - Andrea Wilmsen
- Fraunhofer
UMSICHT, Osterfelder
Straße 3, D-46047 Oberhausen, Germany
| | - Maximilian Purcel
- Laboratory
of Industrial Chemistry, Ruhr-Universität
Bochum, Universitätsstraße
150, D-44780 Bochum, Germany
| | - Martin Muhler
- Laboratory
of Industrial Chemistry, Ruhr-Universität
Bochum, Universitätsstraße
150, D-44780 Bochum, Germany
| | - Heiko Lohmann
- Fraunhofer
UMSICHT, Osterfelder
Straße 3, D-46047 Oberhausen, Germany
| | | | - Ulf-Peter Apfel
- Inorganic
Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
- Fraunhofer
UMSICHT, Osterfelder
Straße 3, D-46047 Oberhausen, Germany
| |
Collapse
|
4
|
Amoo C, Xing C, Tsubaki N, Sun J. Tandem Reactions over Zeolite-Based Catalysts in Syngas Conversion. ACS CENTRAL SCIENCE 2022; 8:1047-1062. [PMID: 36032758 PMCID: PMC9413433 DOI: 10.1021/acscentsci.2c00434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Syngas conversion can play a vital role in providing energy and chemical supplies while meeting environmental requirements as the world gradually shifts toward a net-zero. While prospects of this process cannot be doubted, there is a lingering challenge in distinct product selectivity over the bulk transitional metal catalysts. To advance research in this respect, composite catalysts comprising traditional metal catalysts and zeolites have been deployed to distinct product selectivity while suppressing side reactions. Zeolites are common but highly efficient materials used in the chemical industry for hydroprocessing. Combining the advantages of zeolites and some transition metal catalysts has promoted the catalytic production of various hydrocarbons (e.g., light olefins, aromatics, and liquid fuels) and oxygenates (e.g., methanol, dimethyl ether, formic acid, and higher alcohols) from syngas. In this outlook, a thorough revelation on recent progress in syngas conversion to various products over metal-zeolite composite catalysts is validated. The strategies adopted to couple the metal species and zeolite material into a composite as well as the consequential morphologies for specific product selectivity are highlighted. The key zeolite descriptors that influence catalytic performance, such as framework topologies, proximity and confinement effects, acidities and cations, pore systems, and particle sizes are discussed to provide a deep understanding of the significance of zeolites in syngas conversion. Finally, an outlook regarding challenges and opportunities for syngas conversion using zeolite-based catalysts to meet emerging energy and environmental demands is also presented.
Collapse
Affiliation(s)
- Cederick
Cyril Amoo
- Dalian
National Laboratory for Clean Energy, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuang Xing
- School
of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Noritatsu Tsubaki
- Department
of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Jian Sun
- Dalian
National Laboratory for Clean Energy, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
5
|
Coudercy C, L'hospital V, Checa R, Le Valant A, Afanasiev P, Loridant S. On the reaction mechanism of MnO x/SAPO-34 bifunctional catalysts for the conversion of syngas to light olefins. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01673c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Methanol is a key reaction intermediate formed on MnOx that synergistically reacts with SAPO-34 to produce light olefins.
Collapse
Affiliation(s)
- Christophe Coudercy
- Univ Lyon, CNRS, Université Claude Bernard-Lyon 1, IRCELYON-UMR 5256, 2 avenue A. Einstein, F-69626 Villeurbanne Cedex, France
| | - Valentin L'hospital
- IC2MP, UMR 7285 CNRS, Université de Poitiers, 4 Rue Michel Brunet, F-86022 Poitiers Cedex, France
| | - Ruben Checa
- Univ Lyon, CNRS, Université Claude Bernard-Lyon 1, IRCELYON-UMR 5256, 2 avenue A. Einstein, F-69626 Villeurbanne Cedex, France
| | - Anthony Le Valant
- IC2MP, UMR 7285 CNRS, Université de Poitiers, 4 Rue Michel Brunet, F-86022 Poitiers Cedex, France
| | - Pavel Afanasiev
- Univ Lyon, CNRS, Université Claude Bernard-Lyon 1, IRCELYON-UMR 5256, 2 avenue A. Einstein, F-69626 Villeurbanne Cedex, France
| | - Stéphane Loridant
- Univ Lyon, CNRS, Université Claude Bernard-Lyon 1, IRCELYON-UMR 5256, 2 avenue A. Einstein, F-69626 Villeurbanne Cedex, France
| |
Collapse
|