1
|
Barone V, Fusè M, Aguado R, Potenti S, León I, Alonso ER, Mata S, Lazzari F, Mancini G, Spada L, Gualandi A, Cozzi PG, Puzzarini C, Alonso JL. Bringing Machine-Learning Enhanced Quantum Chemistry and Microwave Spectroscopy to Conformational Landscape Exploration: the Paradigmatic Case of 4-Fluoro-Threonine. Chemistry 2023; 29:e202203990. [PMID: 36734519 DOI: 10.1002/chem.202203990] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
A combined experimental and theoretical study has been carried out on 4-fluoro-threonine, the only naturally occurring fluorinated amino acid. Fluorination of the methyl group significantly increases the conformational complexity with respect to the parent amino acid threonine. The conformational landscape has been characterized in great detail, with special attention given to the inter-conversion pathways between different conformers. This led to the identification of 13 stable low-energy minima. The equilibrium population of so many conformers produces a very complicated and congested rotational spectrum that could be assigned through a strategy that combines several levels of quantum chemical calculations with the principles of machine learning. Twelve conformers out of 13 could be experimentally characterized. The results obtained from the analysis of the intra-molecular interactions can be exploited to accurately model fluorine-substitution effects in biomolecules.
Collapse
Affiliation(s)
- V Barone
- SMART Laboratory, Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - M Fusè
- SMART Laboratory, Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - R Aguado
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia Parque Cientifico UVa, Universidad de Valladolid, 47005, Valladolid, Spain
| | - S Potenti
- SMART Laboratory, Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126, Pisa, Italy
- Dipartimento di "Chimica Giacomo Ciamician", University of Bologna, via F. Selmi 2, 40126, Bologna, Italy
| | - I León
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia Parque Cientifico UVa, Universidad de Valladolid, 47005, Valladolid, Spain
| | - E R Alonso
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia Parque Cientifico UVa, Universidad de Valladolid, 47005, Valladolid, Spain
| | - S Mata
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia Parque Cientifico UVa, Universidad de Valladolid, 47005, Valladolid, Spain
| | - F Lazzari
- SMART Laboratory, Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - G Mancini
- SMART Laboratory, Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - L Spada
- SMART Laboratory, Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - A Gualandi
- Dipartimento di "Chimica Giacomo Ciamician", University of Bologna, via F. Selmi 2, 40126, Bologna, Italy
| | - P G Cozzi
- Dipartimento di "Chimica Giacomo Ciamician", University of Bologna, via F. Selmi 2, 40126, Bologna, Italy
| | - C Puzzarini
- Dipartimento di "Chimica Giacomo Ciamician", University of Bologna, via F. Selmi 2, 40126, Bologna, Italy
| | - J L Alonso
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia Parque Cientifico UVa, Universidad de Valladolid, 47005, Valladolid, Spain
| |
Collapse
|
2
|
León I, Fusè M, Alonso ER, Mata S, Mancini G, Puzzarini C, Alonso JL, Barone V. Unbiased disentanglement of conformational baths with the help of microwave spectroscopy, quantum chemistry and artificial intelligence: the puzzling case of homocysteine. J Chem Phys 2022; 157:074107. [DOI: 10.1063/5.0102841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An integrated experimental-computational strategy for the accurate characterization of the conformational landscape of flexible biomolecule building blocks is proposed. This is based on the combination of rotational spectroscopy with quantum-chemical computations guided by artificial intelligence tools. The first step of the strategy is the conformer search and relative stability evaluation performed by means of an evolutionary algorithm. In this step, last generation semiempirical methods are exploited together with hybrid and double-hybrid density functionals. Next, the barriers ruling the interconversion between the low-lying conformers are evaluated in order to unravel possible fast relaxation paths. The relative stabilities and spectroscopic parameters of the ``surviving' conformers are then refined using state-of-the-art composite schemes. The reliability of the computational procedure is further improved by the inclusion of vibrational and thermal effects. The final step of the strategy is the comparison between experiment and theory without any ad hoc adjustment, which allows an unbiased assignment of the spectroscopic features in terms of different conformers and their spectroscopic parameters. The proposed approach has been tested and validated for homocysteine, a highly flexible non-proteinogenic alpha-amino acid. The synergism of the integrated strategy allowed the characterization of five conformers stabilized by bifurcated N-H-O=C hydrogen bonds, together with an additional conformer involving a more conventional HNH-O hydrogen bond. The stability order estimated from the experimental intensities as well as the number and type of conformers observed in the gas phase are in full agreement with the theoretical predictions. Analogously, a good match has been found for the spectroscopic parameters.
Collapse
Affiliation(s)
- Iker León
- Universidad de Valladolid - Campus Miguel Delibes, Spain
| | | | - Elena R. Alonso
- Química Física y Química Inorgánica, Universidad de Valladolid, Spain
| | - Santiago Mata
- Grupo de Espectroscopia Molecular (GEM). Edificio Quifima. Laboratorios de Espectroscopia y Bioespectroscopia. Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, Spain
| | | | | | - Jose L. Alonso
- Grupo de Espectroscopia Molecular (GEM). Edificio Quifima. Laboratorios de Espectroscopia y Bioespectroscopia, Universidad de Valladolid Departamento Química Física y Química Inorgánica, Spain
| | | |
Collapse
|
3
|
Mardirossian M, Rubini M, Adamo MFA, Scocchi M, Saviano M, Tossi A, Gennaro R, Caporale A. Natural and Synthetic Halogenated Amino Acids-Structural and Bioactive Features in Antimicrobial Peptides and Peptidomimetics. Molecules 2021; 26:7401. [PMID: 34885985 PMCID: PMC8659048 DOI: 10.3390/molecules26237401] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
The 3D structure and surface characteristics of proteins and peptides are crucial for interactions with receptors or ligands and can be modified to some extent to modulate their biological roles and pharmacological activities. The introduction of halogen atoms on the side-chains of amino acids is a powerful tool for effecting this type of tuning, influencing both the physico-chemical and structural properties of the modified polypeptides, helping to first dissect and then rationally modify features that affect their mode of action. This review provides examples of the influence of different types of halogenation in amino acids that replace native residues in proteins and peptides. Examples of synthetic strategies for obtaining halogenated amino acids are also provided, focusing on some representative compounds and their biological effects. The role of halogenation in native and designed antimicrobial peptides (AMPs) and their mimetics is then discussed. These are in the spotlight for the development of new antimicrobial drugs to counter the rise of antibiotic-resistant pathogens. AMPs represent an interesting model to study the role that natural halogenation has on their mode of action and also to understand how artificially halogenated residues can be used to rationally modify and optimize AMPs for pharmaceutical purposes.
Collapse
Affiliation(s)
- Mario Mardirossian
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale, 1, 34125 Trieste, Italy
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Mauro F. A. Adamo
- Department of Chemistry, Centre for Synthesis and Chemical Biology (CSCB), RCSI, 123 St. Stephens Green, Dublin 2, Ireland;
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Michele Saviano
- Institute of Crystallography (IC), National Research Council (CNR), Via Amendola, 122, 70126 Bari, Italy;
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Renato Gennaro
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Andrea Caporale
- Institute of Crystallography (IC), National Research Council (CNR), c/o Area Science Park, S.S. 14 Km 163.5, Basovizza, 34149 Trieste, Italy
| |
Collapse
|