1
|
González-Rodríguez J, González-Granda S, Kumar H, Alvizo O, Escot L, Hailes HC, Gotor-Fernández V, Lavandera I. BioLindlar Catalyst: Ene-Reductase-Promoted Selective Bioreduction of Cyanoalkynes to Give (Z)-Cyanoalkenes. Angew Chem Int Ed Engl 2024; 63:e202410283. [PMID: 38943496 DOI: 10.1002/anie.202410283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/01/2024]
Abstract
The direct synthesis of alkenes from alkynes usually requires the use of transition-metal catalysts. Unfortunately, efficient biocatalytic alternatives for this transformation have yet to be discovered. Herein, the selective bioreduction of electron-deficient alkynes to alkenes catalysed by ene-reductases (EREDs) is described. Alkynes bearing ketone, aldehyde, ester, and nitrile moieties have been effectively reduced with excellent conversions and stereoselectivities, observing clear trends for the E/Z ratios depending on the nature of the electron-withdrawing group. In the case of cyanoalkynes, (Z)-alkenes were obtained as the major product, and the reaction scope was expanded to a wide variety of aromatic substrates (up to >99 % conversion, and Z/E stereoselectivities of up to >99/1). Other alkynes containing aldehyde, ketone, or ester functionalities also proved to be excellent substrates, and interestingly gave the corresponding (E)-alkenes. Preparative biotransformations were performed on a 0.4 mmol scale, producing the desired (Z)-cyanoalkenes with good to excellent isolated yields (63-97 %). This novel reactivity has been rationalised through molecular docking by predicting the binding poses of key molecules in the ERED-pu-0006 active site.
Collapse
Affiliation(s)
- Jorge González-Rodríguez
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
- Current address: Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, 1060, Wien, Austria
| | - Sergio González-Granda
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
- Current address: Department of Chemistry, University of Michigan, 930N University Ave, Ann Arbor, MI 48109, USA
| | - Hirdesh Kumar
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Oscar Alvizo
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Lorena Escot
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
2
|
Guo P, Xu Y, Wu H, Zhang L. Membrane-Free Selective Semi-Hydrogenation of Alkynes Over an In Situ Formed Copper Nanoparticle Electrode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401107. [PMID: 38530045 DOI: 10.1002/smll.202401107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/12/2024] [Indexed: 03/27/2024]
Abstract
Selective semi-hydrogenation of alkynes is a significant reaction for preparing functionalized alkenes. Electrochemical semi-hydrogenation presents a sustainable alternative to the traditional thermal process. In this research, affordable copper acetylacetonate is employed as a catalyst precursor for the electrocatalytic hydrogenation of alkynes, using MeOH as the hydrogen source in an undivided cell. Good to excellent yields for both aromatic and aliphatic internal/terminal alkynes are obtained under constant current conditions. Notably, up to 99% Z selectivity is achieved for various internal alkynes. Mechanistic investigations revealed the formation of copper nanoparticles (NPs) at the cathode during electrolysis, acting as the catalyst for the selective semireduction of alkynes. The copper NPs deposited cathode demonstrated reusable for further hydrogenation.
Collapse
Affiliation(s)
- Pengyu Guo
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Yousen Xu
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Hao Wu
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Lei Zhang
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
3
|
Sk M, Haldar S, Bera S, Banerjee D. Recent advances in the selective semi-hydrogenation of alkyne to ( E)-olefins. Chem Commun (Camb) 2024; 60:1517-1533. [PMID: 38251772 DOI: 10.1039/d3cc05395d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Considering the potential importance and upsurge in demand, the selective semi-hydrogenation of alkynes to (E)-olefins has attracted significant interest. This article highlights the recent advances in newer technologies and important methodologies directed to (E)-olefins from alkynes developed from 2015 to 2023. Notable features summarised include the catalyst or ligand design and control of product selectivity based on precious and nonprecious metal catalysts for semi-hydrogenation to (E)-olefins. Mechanistic studies for various catalytic transformations, including synthetic application to bioactive compounds, are summarised.
Collapse
Affiliation(s)
- Motahar Sk
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Shuvojit Haldar
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
4
|
Baker GJ, White AJP, Casely IJ, Grainger D, Crimmin MR. Catalytic, Z-Selective, Semi-Hydrogenation of Alkynes with a Zinc-Anilide Complex. J Am Chem Soc 2023; 145:7667-7674. [PMID: 36972405 PMCID: PMC10080692 DOI: 10.1021/jacs.3c02301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The reversible activation of dihydrogen with a molecular zinc anilide complex is reported. The mechanism of this reaction has been probed through stoichiometric experiments and density functional theory (DFT) calculations. The combined evidence suggests that H2 activation occurs by addition across the Zn-N bond via a four-membered transition state in which the Zn and N atoms play a dual role of Lewis acid and Lewis base. The zinc hydride complex that results from H2 addition has been shown to be remarkably effective for the hydrozincation of C═C bonds at modest temperatures. The scope of hydrozincation includes alkynes, alkenes, and a 1,3-butadiyne. For alkynes, the hydrozincation step is stereospecific leading exclusively to the syn-isomer. Competition experiments show that the hydrozincation of alkynes is faster than the equivalent alkene substrates. These new discoveries have been used to develop a catalytic system for the semi-hydrogenation of alkynes. The catalytic scope includes both aryl- and alkyl-substituted internal alkynes and proceeds with high alkene: alkane, Z:E ratios, and modest functional group tolerance. This work offers a first example of selective hydrogenation catalysis using zinc complexes.
Collapse
Affiliation(s)
- Greg J Baker
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London W12 0BZ, United Kingdom
| | - Andrew J P White
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London W12 0BZ, United Kingdom
| | - Ian J Casely
- Johnson Matthey Technology Centre, Blounts Court, Sonning Common, Reading RG4 9NH, United Kingdom
| | - Damian Grainger
- Johnson Matthey, 28 Cambridge Science Park, Milton Road, Cambridge CB4 0FP, United Kingdom
| | - Mark R Crimmin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London W12 0BZ, United Kingdom
| |
Collapse
|
5
|
Wu Y, Ao Y, Li Z, Liu C, Zhao J, Gao W, Li X, Wang H, Liu Y, Liu Y. Modulation of metal species as control point for Ni-catalyzed stereodivergent semihydrogenation of alkynes with water. Nat Commun 2023; 14:1655. [PMID: 36964163 PMCID: PMC10039052 DOI: 10.1038/s41467-023-37022-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/23/2023] [Indexed: 03/26/2023] Open
Abstract
A base-assisted metal species modulation mechanism enables Ni-catalyzed stereodivergent transfer semihydrogenation of alkynes with water, delivering both olefinic isomers smoothly using cheap and nontoxic catalysts and additives. Different from most precedents, in which E-alkenes derive from the isomerization of Z-alkene products, the isomers were formed in orthogonal catalytic pathways. Mechanistic studies suggest base as a key early element in modulation of the reaction pathways: by adding different bases, nickel species with disparate valence states could be accessed to initiate two catalytic cycles toward different stereoisomers. The practicability of the method is showcased with nearly 70 examples, including internal and terminal triple bonds, enynes and diynes, affording semi-hydrogenated products in high yields and selectivity.
Collapse
Affiliation(s)
- Yuanqi Wu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Yuhui Ao
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Zhiming Li
- Department of Chemistry, Fudan University, 200438, Shanghai, PR China.
| | - Chunhui Liu
- College of Chemical and Materials Engineering, Xuchang University, 461000, Xuchang, PR China
| | - Jinbo Zhao
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Wenyu Gao
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Xuemeng Li
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Hui Wang
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Yongsheng Liu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Yu Liu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China.
| |
Collapse
|
6
|
Goyal V, Bhatt T, Dewangan C, Narani A, Naik G, Balaraman E, Natte K, Jagadeesh RV. Methanol as a Potential Hydrogen Source for Reduction Reactions Enabled by a Commercial Pt/C Catalyst. J Org Chem 2023; 88:2245-2259. [PMID: 36753730 DOI: 10.1021/acs.joc.2c02657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Catalytic reduction reactions using methanol as a transfer hydrogenating agent is gaining significant attention because this simple alcohol is inexpensive and produced on a bulk scale. Herein, we report the catalytic utilization of methanol as a hydrogen source for the reduction of different functional organic compounds such as nitroarenes, olefins, and carbonyl compounds. The key to the success of this transformation is the use of a commercially available Pt/C catalyst, which enabled the transfer hydrogenation of a series of simple and functionalized nitroarenes-to-anilines, alkenes-to-alkanes, and aldehydes-to-alcohols using methanol as both the solvent and hydrogen donor. The practicability of this Pt-based protocol is showcased by demonstrating catalyst recycling and reusability as well as reaction upscaling. In addition, the Pt/C catalytic system was also adaptable for the N-methylation and N-alkylation of anilines via the borrowing hydrogen process. This work provides a simple and flexible approach to prepare a variety of value-added products from readily available methanol, Pt/C, and other starting materials.
Collapse
Affiliation(s)
- Vishakha Goyal
- Chemical and Material Sciences Division, CSIR─Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Tarun Bhatt
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| | - Chitrarekha Dewangan
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| | - Anand Narani
- Chemical and Material Sciences Division, CSIR─Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Ganesh Naik
- Chemical and Material Sciences Division, CSIR─Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Kishore Natte
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| | | |
Collapse
|
7
|
Gregori BJ, Schmotz MWS, Jacobi von Wangelin A. Stereoselective Semi-Hydrogenations of Alkynes by First-Row (3d) Transition Metal Catalysts. ChemCatChem 2022; 14:e202200886. [PMID: 36632425 PMCID: PMC9825939 DOI: 10.1002/cctc.202200886] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Indexed: 01/14/2023]
Abstract
The chemo- and stereoselective semi-hydrogenation of alkynes to alkenes is a fundamental transformation in synthetic chemistry, for which the use of precious 4d or 5d metal catalysts is well-established. In mankind's unwavering quest for sustainability, research focus has considerably veered towards the 3d metals. Given their high abundancy and availability as well as lower toxicity and noxiousness, they are undoubtedly attractive from both an economic and an environmental perspective. Herein, we wish to present noteworthy and groundbreaking examples for the use of 3d metal catalysts for diastereoselective alkyne semi-hydrogenation as we embark on a journey through the first-row transition metals.
Collapse
Affiliation(s)
- Bernhard J. Gregori
- Dept. of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | | | | |
Collapse
|
8
|
Torres-Calis A, García JJ. Manganese-catalyzed transfer semihydrogenation of internal alkynes to E-alkenes with iPrOH as hydrogen source. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00246a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Mn-catalyzed transfer semihydrogenation of internal alkynes to E-alkenes is reported herein, along with Mn-catalyzed hydration of α-keto alkynes. Mechanistic studies displayed an asymmetrical Mn-hydride species performing the catalytic turnover.
Collapse
Affiliation(s)
- Antonio Torres-Calis
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Juventino J. García
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
9
|
Shen GB, Qian BC, Fu YH, Zhu XQ. Thermodynamics of the elementary steps of organic hydride chemistry determined in acetonitrile and their applications. Org Chem Front 2022. [DOI: 10.1039/d2qo01310j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review focuses on the thermodynamics of the elementary step of 421 organic hydrides and unsaturated compounds releasing or accepting hydride or hydrogen determined in acetonitrile as well as their potential applications.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Bao-Chen Qian
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|