1
|
Mohammed OA, Youssef ME, Doghish AS, Hamad RS, Abdel-Reheim MA, Alghamdi M, Alamri MMS, Alfaifi J, Adam MIE, Alharthi MH, Alhalafi AH, Bahashwan E, Rezigalla AA, BinAfif DF, Abdel-Ghany S, Attia MA, Elmorsy EA, Al-Noshokaty TM, Fikry H, Saleh LA, Saber S. A novel combination therapy targets sonic hedgehog signaling by the dual inhibition of HMG-CoA reductase and HSP90 in rats with non-alcoholic steatohepatitis. Eur J Pharm Sci 2024; 198:106792. [PMID: 38714237 DOI: 10.1016/j.ejps.2024.106792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024]
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by liver inflammation, fat accumulation, and collagen deposition. Due to the limited availability of effective treatments, there is a pressing need to develop innovative strategies. Given the complex nature of the disease, employing combination approaches is essential. Hedgehog signaling has been recognized as potentially promoting NASH, and cholesterol can influence this signaling by modifying the conformation of PTCH1 and SMO activity. HSP90 plays a role in the stability of SMO and GLI proteins. We revealed significant positive correlations between Hedgehog signaling proteins (Shh, SMO, GLI1, and GLI2) and both cholesterol and HSP90 levels. Herein, we investigated the novel combination of the cholesterol-lowering agent lovastatin and the HSP90 inhibitor PU-H71 in vitro and in vivo. The combination demonstrated a synergy score of 15.09 and an MSA score of 22.85, as estimated by the ZIP synergy model based on growth inhibition rates in HepG2 cells. In a NASH rat model induced by thioacetamide and a high-fat diet, this combination therapy extended survival, improved liver function and histology, and enhanced antioxidant defense. Additionally, the combination exhibited anti-inflammatory and anti-fibrotic potential by influencing the levels of TNF-α, TGF-β, TIMP-1, and PDGF-BB. This effect was evident in the suppression of the Col1a1 gene expression and the levels of hydroxyproline and α-SMA. These favorable outcomes may be attributed to the combination's potential to inhibit key Hedgehog signaling molecules. In conclusion, exploring the applicability of this combination contributes to a more comprehensive understanding and improved management of NASH and other fibrotic disorders.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia; Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Assad Ali Rezigalla
- Department of Anatomy, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Daad Fuad BinAfif
- Department of Medicine, King Abdullah Medical City, Makkah 24246, Saudi Arabia
| | - Sameh Abdel-Ghany
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of basic medical sciences, Ibn Sina University for medical sciences, Amman 16197, Jordan
| | - Mohammed A Attia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Saudi Arabia; Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Heba Fikry
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Pharmacology and Toxicology, Collage of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
2
|
Lotus seed resistant starch ameliorates high-fat diet induced hyperlipidemia by fatty acid degradation and glycerolipid metabolism pathways in mouse liver. Int J Biol Macromol 2022; 215:79-91. [PMID: 35718147 DOI: 10.1016/j.ijbiomac.2022.06.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 11/23/2022]
Abstract
We investigated the potential efficacy and underlying mechanisms of Lotus seed Resistant Starch (LRS) for regulating hyperlipidemia in mice fed a High-fat Diet (HFD). Mouse were fed a normal diet (Normal Control group, NC group), HFD alone (MC group), HFD plus lovastatin (PC group), or HFD with low/medium/high LRS (LLRS, MLRS, and HLRS groups, respectively) for 4 weeks. LRS supplementation significantly decreased body weight and significantly reduced serum levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, and high-density lipopro-tein cholesterol compared with the MC group. LRS also significantly alleviated hepatic steatosis, especially in the MLRS group, which also showed a significantly reduced visceral fat index. LLRS supplementation significantly regulated genes associated with glycerolipid metabolism and steroid hormone biosynthesis (Lpin1 and Ugt2b38), MLRS significantly regulated genes related to fatty acid degradation, fatty acid elongation, and glycerolipid metabolism (Lpin1, Hadha, Aldh3a2, and Acox1), whereas HLRS significantly regulated genes related to fatty acid elongation and glycerolipid metabolism (Lpin1, Elovl3, Elovol5, and Agpat3). The fatty acid-degradation pathway regulated by MLRS thus exerts better control of serum lipid levels, body weight, visceral fat index, and liver steatosis in mice compared with LLRS- and HLRS-regulated pathways.
Collapse
|
3
|
Natural Products for Cancer Therapy: A Review of Their Mechanism of Actions and Toxicity in the Past Decade. J Trop Med 2022; 2022:5794350. [PMID: 35309872 PMCID: PMC8933079 DOI: 10.1155/2022/5794350] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/13/2021] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
The ethnopharmacological information gathered over many centuries and the presence of diverse metabolites have made the medicinal plants as the prime source of drugs. Despite the positive attributes of natural products, there are many questions pertaining to their mechanism of actions and molecular targets that impede their development as therapeutic agents. One of the major challenges in cancer research is the toxicity exerted by investigational agents towards the host. An understanding of their molecular targets, underlying mechanisms can reveal their anticancer efficacy, help in optimal therapeutic dose selection, to mitigate their side effects and toxicity towards the host. The purpose of this review is to collate details on natural products that are recently been investigated extensively in the past decade for their anticancer potential. Besides, critical analysis of their molecular targets and underlying mechanisms on multiple cancer cell lines, an in-depth probe of their toxicological screening on rodent models is outlined as well to observe the prevalence of their toxicity towards host. This review can provide valuable insights for researchers in developing methods, strategies during preclinical and clinical evaluation of anticancer candidates.
Collapse
|