1
|
Wang T, Kanda H, Kusumi K, Mei L, Zhang L, Machida H, Norinaga K, Yamamoto T, Sekikawa H, Yasui K, Zhu L. Environmental-friendly extraction of di(2-ethylhexyl) phthalate from poly(vinyl chloride) using liquefied dimethyl ether. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 183:21-31. [PMID: 38714119 DOI: 10.1016/j.wasman.2024.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
Poly(vinyl chloride) (PVC) is one of the most widely used plastics. However, a major challenge in recycling PVC is that there is no economical method to separate and remove its toxic phthalate plasticizers. This research made a breakthrough by extracting PVC with liquefied dimethyl ether (DME) and successfully separating the plasticizer components. Nearly all (97.1 %) of the di(2-ethylhexyl) phthalate plasticizer was extracted within 30 min by passing liquefied DME (285 g) through PVC at 25 °C. The compatibility of PVC with organic solvents, including liquefied DME, was derived theoretically from their Hansen solubility parameters (HSP), and actual dissolution experiments were conducted to determine the optimal PVC solvents. A liquefied DME mixture was used to dissolve PVC, and the extract was diluted with ethanol to precipitate the dissolved PVC. We demonstrated that liquefied DME is a promising method for producing high quality recycled products and that the process retains the fundamental properties of plasticizers and PVC without inducing degradation or depolymerization. Because of its low boiling point, DME can be easily separated from the solute after extraction, allowing for efficient reuse of the solvent, extracted plasticizer, and PVC. DME does not require heat and produces little harmful wastewater, which significantly reduces the energy consumption of the plasticizer additive separation process.
Collapse
Affiliation(s)
- Tao Wang
- Department of Chemical Systems Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hideki Kanda
- Department of Chemical Systems Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | - Kaito Kusumi
- Department of Materials Process Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Li Mei
- Department of Chemical Systems Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Lijuan Zhang
- Department of Chemical Systems Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hiroshi Machida
- Department of Chemical Systems Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Koyo Norinaga
- Department of Chemical Systems Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Tetsuya Yamamoto
- Department of Chemical Systems Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hiroshi Sekikawa
- Central Research Laboratories, DIC Corporation, 631, Sakado, Sakura, Chiba 285-8668, Japan
| | - Kengo Yasui
- Central Research Laboratories, DIC Corporation, 631, Sakado, Sakura, Chiba 285-8668, Japan
| | - Li Zhu
- Department of Chemical Systems Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
2
|
Kang C, Yang H. The journey of decellularized vessel: from laboratory to operating room. Front Bioeng Biotechnol 2024; 12:1413518. [PMID: 38983603 PMCID: PMC11231200 DOI: 10.3389/fbioe.2024.1413518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Over the past few decades, there has been a remarkable advancement in the field of transplantation. But the shortage of donors is still an urgent problem that requires immediate attention. As with xenotransplantation, bioengineered organs are promising solutions to the current shortage situation. And decellularization is a unique technology in organ-bioengineering. However, at present, there is no unified decellularization method for different tissues, and there is no gold-standard for evaluating decellularization efficiency. Meanwhile, recellularization, re-endothelialization and modification are needed to form transplantable organs. With this mind, we can start with decellularization and re-endothelialization or modification of small blood vessels, which would serve to address the shortage of small-diameter vessels while simultaneously gathering the requisite data and inspiration for further recellularization of the whole organ-scale vascular network. In this review, we collect the related experiments of decellularization and post-decellularization approaches of small vessels in recent years. Subsequently, we summarize the experience in relation to the decellularization and post-decellularization combinations, and put forward obstacle we face and possible solutions.
Collapse
Affiliation(s)
- Chenbin Kang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongji Yang
- Organ Transplant Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province and Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Wang T, Zhu L, Mei L, Kanda H. Extraction and Separation of Natural Products from Microalgae and Other Natural Sources Using Liquefied Dimethyl Ether, a Green Solvent: A Review. Foods 2024; 13:352. [PMID: 38275719 PMCID: PMC10815339 DOI: 10.3390/foods13020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
Microalgae are a sustainable source for the production of biofuels and bioactive compounds. This review discusses significant research on innovative extraction techniques using dimethyl ether (DME) as a green subcritical fluid. DME, which is characterized by its low boiling point and safety as an organic solvent, exhibits remarkable properties that enable high extraction rates of various active compounds, including lipids and bioactive compounds, from high-water-content microalgae without the need for drying. In this review, the superiority of liquefied DME extraction technology for microalgae over conventional methods is discussed in detail. In addition, we elucidate the extraction mechanism of this technology and address its safety for human health and the environment. This review also covers aspects related to extraction equipment, various applications of different extraction processes, and the estimation and trend analysis of the Hansen solubility parameters. In addition, we anticipate a promising trajectory for the expansion of this technology for the extraction of various resources.
Collapse
Affiliation(s)
| | | | | | - Hideki Kanda
- Department of Chemical Systems Engineering, Nagoya University, Furocho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
4
|
Kanda H, Oya K, Goto M. Surfactant-Free Decellularization of Porcine Auricular Cartilage Using Liquefied Dimethyl Ether and DNase. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3172. [PMID: 37110010 PMCID: PMC10146022 DOI: 10.3390/ma16083172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 06/19/2023]
Abstract
The most common decellularization method involves lipid removal using surfactant sodium dodecyl sulfate (SDS) and DNA fragmentation using DNase, and is associated with residual SDS. We previously proposed a decellularization method for the porcine aorta and ostrich carotid artery using liquefied dimethyl ether (DME), which is free from the concerns associated with SDS residues, instead of SDS. In this study, the DME + DNase method was tested on crushed porcine auricular cartilage tissues. Unlike with the porcine aorta and the ostrich carotid artery, it is important to degas the porcine auricular cartilage using an aspirator before DNA fragmentation. Although approximately 90% of the lipids were removed using this method, approximately 2/3 of the water was removed, resulting in a temporary Schiff base reaction. The amount of residual DNA in the tissue was approximately 27 ng/mg dry weight, which is lower than the regulatory value of 50 ng/mg dry weight. Hematoxylin and eosin staining confirmed that cell nuclei were removed from the tissue. Residual DNA fragment length assessment by electrophoresis confirmed that the residual DNA was fragmented to less than 100 bp, which was lower than the regulatory limit of 200 bp. By contrast, in the uncrushed sample, only the surface was decellularized. Thus, although limited to a sample size of approximately 1 mm, liquefied DME can be used to decellularize porcine auricular cartilage. Thus, liquefied DME, with its low persistence and high lipid removal capacity, is an effective alternative to SDS.
Collapse
|
5
|
Preliminary In Vitro Assessment of Decellularized Porcine Descending Aorta for Clinical Purposes. J Funct Biomater 2023; 14:jfb14030141. [PMID: 36976065 PMCID: PMC10058365 DOI: 10.3390/jfb14030141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Conduit substitutes are increasingly in demand for cardiovascular and urological applications. In cases of bladder cancer, radical cystectomy is the preferred technique: after removing the bladder, a urinary diversion has to be created using autologous bowel, but several complications are associated with intestinal resection. Thus, alternative urinary substitutes are required to avoid autologous intestinal use, preventing complications and facilitating surgical procedures. In the present paper, we are proposing the exploitation of the decellularized porcine descending aorta as a novel and original conduit substitute. After being decellularized with the use of two alternative detergents (Tergitol and Ecosurf) and sterilized, the porcine descending aorta has been investigated to assess its permeability to detergents through methylene blue dye penetration analysis and to study its composition and structure by means of histomorphometric analyses, including DNA quantification, histology, two-photon microscopy, and hydroxyproline quantification. Biomechanical tests and cytocompatibility assays with human mesenchymal stem cells have been also performed. The results obtained demonstrated that the decellularized porcine descending aorta preserves its major features to be further evaluated as a candidate material for urological applications, even though further studies have to be carried out to demonstrate its suitability for the specific application, by performing in vivo tests in the animal model.
Collapse
|
6
|
Kanda H, Oya K, Irisawa T, Wahyudiono, Goto M. Tensile strength of ostrich carotid artery decellularized with liquefied dimethyl ether and DNase: An effort in addressing religious and cultural concerns. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
7
|
Ethanol-free extraction of curcumin and antioxidant activity of components from wet Curcuma longa L. by liquefied dimethyl ether. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
8
|
Wang X, Chan V, Corridon PR. Decellularized blood vessel development: Current state-of-the-art and future directions. Front Bioeng Biotechnol 2022; 10:951644. [PMID: 36003539 PMCID: PMC9394443 DOI: 10.3389/fbioe.2022.951644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 12/31/2022] Open
Abstract
Vascular diseases contribute to intensive and irreversible damage, and current treatments include medications, rehabilitation, and surgical interventions. Often, these diseases require some form of vascular replacement therapy (VRT) to help patients overcome life-threatening conditions and traumatic injuries annually. Current VRTs rely on harvesting blood vessels from various regions of the body like the arms, legs, chest, and abdomen. However, these procedures also produce further complications like donor site morbidity. Such common comorbidities may lead to substantial pain, infections, decreased function, and additional reconstructive or cosmetic surgeries. Vascular tissue engineering technology promises to reduce or eliminate these issues, and the existing state-of-the-art approach is based on synthetic or natural polymer tubes aiming to mimic various types of blood vessel. Burgeoning decellularization techniques are considered as the most viable tissue engineering strategy to fill these gaps. This review discusses various approaches and the mechanisms behind decellularization techniques and outlines a simplified model for a replacement vascular unit. The current state-of-the-art method used to create decellularized vessel segments is identified. Also, perspectives on future directions to engineer small- (inner diameter >1 mm and <6 mm) to large-caliber (inner diameter >6 mm) vessel substitutes are presented.
Collapse
Affiliation(s)
- Xinyu Wang
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter R Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Physicochemical, digestive and rheological properties of protein from tuna by subcritical dimethyl ether: Focus on process-related indexes. Food Chem 2022; 372:131337. [PMID: 34818745 DOI: 10.1016/j.foodchem.2021.131337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/29/2021] [Accepted: 10/02/2021] [Indexed: 12/21/2022]
Abstract
The process-related physicochemical, digestive and rheological properties of protein prepared by subcritical dimethyl ether extraction (SDEE) were comprehensively investigated and compared with those obtained by pH-shift, to study the industrial potential of SDEE. Two different materials from tuna (meat and liver) were studied in parallel, and SDEE had similar effects on the proteins in them. The protein component was almost unchanged before and after SDEE, while the content of water-soluble protein and alkali-soluble protein was substantially reduced and increased after pH-shift, respectively. We also found that SDEE had superior ability to pH-shift to conserve light metals, remove lipids and heavy metals, and maintain protein structure. Furthermore, SDEE-produced protein powders were easier for humans to digest, and their gelation and emulsification were also superior to those prepared by pH-shift. The aforementioned results suggest that SDEE can remove more impurities, and the obtained protein has outstanding potential in industrial applications.
Collapse
|
10
|
Kim H, Choi KH, Sung SC, Kim YS. Effect of ethanol washing on porcine pulmonary artery wall decellularization using sodium dodecyl sulfate. Artif Organs 2022; 46:1281-1293. [PMID: 35107179 DOI: 10.1111/aor.14192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/19/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND To determine the effectiveness of ethanol (EtOH) washing on porcine pulmonary artery (PA) wall decellularization using sodium dodecyl sulfate (SDS), we compared three different washing methods (phosphate-buffered saline [PBS], pH 9 alkali, and EtOH washing). METHODS Fresh porcine PA walls were decellularized using 0.5% SDS and 0.5% sodium deoxycholate (SDC). The decellularized tissues were rinsed using three different washing techniques. Histological, biochemical, and mechanical analyses were conducted. Implantation into the subcutaneous tissue of rats and patch implantation into the carotid artery of dogs were performed as preliminary in vivo studies. RESULTS The decellularization protocol based on SDS and SDC effectively removed the cells. The major extracellular matrix (ECM) structures (collagen, elastic fiber, and glycosaminoglycan) were properly preserved with the 75% EtOH-washing method. Significantly reduced residual SDS content was identified in EtOH-washed tissues compared to that in the other methods. No significant difference in the mechanical strength test was observed between the washing methods, and the EtOH-washing method showed better results in the metabolic activity test compared to the PBS-washing method. In the rat study model, no acute rejection or massive calcification was observed. The in vivo preliminary canine study showed better cell repopulation in the EtOH-washed group. CONCLUSION EtOH washing of SDS-based decellularized porcine PA wall can reduce the residual SDS content and preserve ECM structures, especially the elastin content, and could also enhance cell repopulation after re-implantation.
Collapse
Affiliation(s)
- Hyungtae Kim
- Department of Thoracic and Cardiovascular Surgery, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Kwang Ho Choi
- Department of Thoracic and Cardiovascular Surgery, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Si Chan Sung
- Department of Thoracic and Cardiovascular Surgery, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Young Suk Kim
- Department of Thoracic and Cardiovascular Surgery, Pusan National University Yangsan Hospital, Biomedical Research Institute, Yangsan, Korea
| |
Collapse
|
11
|
Moffat D, Ye K, Jin S. Decellularization for the retention of tissue niches. J Tissue Eng 2022; 13:20417314221101151. [PMID: 35620656 PMCID: PMC9128068 DOI: 10.1177/20417314221101151] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/01/2022] [Indexed: 12/25/2022] Open
Abstract
Decellularization of natural tissues to produce extracellular matrix is a promising method for three-dimensional scaffolding and for understanding microenvironment of the tissue of interest. Due to the lack of a universal standard protocol for tissue decellularization, recent investigations seek to develop novel methods for whole or partial organ decellularization capable of supporting cell differentiation and implantation towards appropriate tissue regeneration. This review provides a comprehensive and updated perspective on the most recent advances in decellularization strategies for a variety of organs and tissues, highlighting techniques of chemical, physical, biological, enzymatic, or combinative-based methods to remove cellular contents from tissues. In addition, the review presents modernized approaches for improving standard decellularization protocols for numerous organ types.
Collapse
Affiliation(s)
- Deana Moffat
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
| | - Sha Jin
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
| |
Collapse
|
12
|
Kanda H, Katsube T, Wahyudiono, Goto M. Preparation of Liposomes from Soy Lecithin Using Liquefied Dimethyl Ether. Foods 2021; 10:1789. [PMID: 34441566 PMCID: PMC8393803 DOI: 10.3390/foods10081789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022] Open
Abstract
We investigated a method to prepare liposomes; soy lecithin was dissolved in liquefied dimethyl ether (DME) at 0.56 MPa, which was then injected into warm water. Liposomes can be successfully prepared at warm water temperatures above 45 °C. The transmission electron microscopy (TEM) images of the obtained liposomes, size distribution, ζ-potential measurements by dynamic light scattering and the amount of residual medium were compared by gas chromatography using the conventional medium, diethyl ether. The size of the obtained liposomes was approximately 60-300 nm and the ζ-potential was approximately -57 mV, which was almost the same as that of the conventional medium. Additionally, for the conventional media, a large amount remained in the liposome dispersion even after removal by depressurization and dialysis membrane treatment; however, liquefied DME, owing to its considerably low boiling point, was completely removed by depressurization. Liquefied DME is a very attractive medium for the preparation of liposomes because it does not have the toxicity and residue problems of conventional solvents or the hazards of ethanol addition and high pressure of supercritical carbon dioxide; it is also environmentally friendly.
Collapse
Affiliation(s)
- Hideki Kanda
- Department of Materials Process Engineering, Nagoya University, Furocho, Chikusa, Nagoya 464-8603, Japan; (T.K.); (W.); (M.G.)
| | | | | | | |
Collapse
|
13
|
Enhancement of Lipid Extraction from Soya Bean by Addition of Dimethyl Ether as Entrainer into Supercritical Carbon Dioxide. Foods 2021; 10:foods10061223. [PMID: 34071290 PMCID: PMC8229543 DOI: 10.3390/foods10061223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Soya beans contain a variety of lipids, and it is important to selectively separate neutral lipids from other lipids. Supercritical carbon dioxide extraction has been used as an alternative to the selective separation of neutral lipids from soya beans, usually using non-polar hexane. However, supercritical carbon dioxide extraction has a high operating pressure of over 40 MPa. On the other hand, liquefied dimethyl ether extraction, which has attracted attention in recent years, requires an operating pressure of only 0.5 MPa, but there is concern about the possibility of an explosion during operation because it is a flammable liquefied gas. Therefore, this study aims to reduce the operating pressure by using a non-flammable solvent, supercritical carbon dioxide extraction mixed with liquefied dimethyl ether as an entrainer. The extraction rate and the amount of neutral lipids extracted increased with increasing amounts of added liquefied dimethyl ether. In the mixed solvent, the amount of neutral lipids extracted was higher at an operating pressure of 20 MPa than in pure supercritical carbon dioxide extraction at 40 MPa. The mixing of liquefied dimethyl ether with supercritical carbon dioxide allowed an improvement in the extraction of neutral lipids while remaining non-flammable.
Collapse
|