1
|
Chakrabarti C, Khan Pathan S, Deep Punetha V, Pillai SA. Interaction of Tetronics® micelles with stimuli and additives and a commanding aspect towards drug delivery: An overview. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Pal B, Matsoso JB, Parameswaran AK, Roy PK, Lukas D, Luxa J, Marvan P, Azadmanjiri J, Hrdlicka Z, Jose R, Sofer Z. Flexible, ultralight, and high-energy density electrochemical capacitors using sustainable materials. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Zhang C, Jiang K, Zhang Y, Wang J, Xue Z. Lithium Salt-Induced In-Situ Polymerizations Enable Double Network Polymer Electrolytes. Macromol Rapid Commun 2022; 43:e2100853. [PMID: 35218088 DOI: 10.1002/marc.202100853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/14/2022] [Indexed: 11/06/2022]
Abstract
Structural design is an intriguing strategy to improve the physical and electrochemical performance of polymer electrolytes (PEs) for lithium-ion batteries. However, the complex synthetic process and introduction of non-electrolyte composition severely limit the development and practical application of PEs. Here we report a facile method for the fabrication of a double network polymer electrolyte (DN-PE) through combining the lithium salt-accelerated thiol-Michael addition and lithium salt-catalyzed radical polymerization. By adjusting the reaction temperature, the double network with the crosslinking structure could be in-situ formed step by step at room temperature and 80 °C. Notably, using lithium salt as the accelerator and catalyst avoids the addition of extra species and the related side reactions in the electrolyte system. Compared with single network polymer electrolyte (SN-PE), DN-PE has a distinctly improved mechanical strength and a better interfacial compatibility with the electrode, which leads to a stable cycling of the symmetric Li|DN-PE|Li cell over 1000 h at a current density of 0.05 mA cm-2 . In addition, the Li|DN-PE|LiFePO4 cell shows a high discharge specific capacity of 150.3 mAh g-1 at 0.1 C and coulomb efficiency of 99%. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chi Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ke Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jirong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhigang Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|