Gujar JP, Modhera B. Green synthesis of solketal from glycerol using metal-modified ZSM-5 zeolite catalysts: process optimization.
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024;
31:28353-28367. [PMID:
38538995 DOI:
10.1007/s11356-024-33031-4]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/18/2024] [Indexed: 04/30/2024]
Abstract
This study investigates the production of solketal (2,2-dimethyl-1,3-dioxolane-4-methanol) from glycerol via ketalization reaction using M-ZSM-5 catalysts (M = Fe, Co, Ni, Cu, and Zn). The wet impregnation method ensured precise metal loading and versatility in catalyst preparation. We present a novel approach by employing a suite of characterization techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), Thermogravimetric analysis (TGA), and Field-emission scanning electron microscopy (FE-SEM), to elucidate the catalyst's structure, bonding, surface area, thermal stability, and morphology, ultimately linking these properties to their performance. Solketal synthesis was optimized in a reactor, with parameters like temperature, glycerol:acetone molar ratio, catalyst amount, reaction time, and stirring speed. Optimal conditions were identified as 60 °C, 1:4, 0.2 g, 60 min, and 1200 rpm, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis confirmed successful solketal formation. Among M-ZSM-5 catalysts tested, Cu-ZSM-5 emerged the most efficient, achieving an impressive 99% glycerol conversion and 96% solketal selectivity. Notably, Cu-ZSM-5 catalyst displayed exceptional reusability, regaining its initial activity through calcination, thus minimizing waste generation. This research unveils Cu-ZSM-5 as a highly efficient catalyst and promotes sustainability by utilizing a renewable glycerol feedstock to produce valuable solketal with applications in fuel additives, solvents, and pharmaceuticals. This work paves the way for developing environmentally friendly processes for waste valorization and producing valuable bio-based chemicals.
Collapse