1
|
Elkanzi NAA, Hrichi H, Muqbil Alsirhani A, Bakr RB. Antioxidant and Antimicrobial Potential of 1,8-Naphthyridine Based Scaffolds: Design, Synthesis and in Silico Simulation Studies within Topoisomerase II. Chem Biodivers 2024; 21:e202301746. [PMID: 38459958 DOI: 10.1002/cbdv.202301746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 03/09/2024] [Indexed: 03/11/2024]
Abstract
A series of spiro β-Lactams (4 a-c, 7 a-c) and thiazolidinones (5 a-c, 8 a-c) possessing 1,8-naphthyridine moiety were synthesized in this study. The structure of the newly synthesized compounds has been confirmed by IR, 1H-NMR, 13C NMR, mass spectra, and elemental analysis. The synthesized compounds were tested in vitro for their antibacterial and antifungal activity against various strains. The antimicrobial data showed that most of the compounds displayed good efficacy against both bacteria and fungi. The structure-activity relationship (SAR) studies suggested that the presence of electron-withdrawing chloro (3 b, 4 b, and 5 b) and nitro groups (7 b, 8 b) at the para position of the phenyl ring improved the antimicrobial activity of the compounds. The free radical scavenging assay showed that all the synthesized compounds exhibited significant antioxidant activity on DPPH. Compounds 8 b (IC50=17.68±0.76 μg/mL) and 4 c (IC50=18.53±0.52 μg/mL) showed the highest antioxidant activity compared to ascorbic acid (IC50=15.16±0.43 μg/mL). Molecular docking studies were also conducted to support the antimicrobial and SAR results.
Collapse
Affiliation(s)
- Nadia A A Elkanzi
- Chemistry Department, college of Science, Jouf University, 2014, Sakaka, Saudi Arabia
| | - Hajer Hrichi
- Chemistry Department, college of Science, Jouf University, 2014, Sakaka, Saudi Arabia
| | - Alaa Muqbil Alsirhani
- Chemistry Department, college of Science, Jouf University, 2014, Sakaka, Saudi Arabia
| | - Rania B Bakr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt
| |
Collapse
|
2
|
Tulsiyan KD, Panda SK, Rana MK, Biswal HS. Critical assessment of interactions between ct-DNA and choline-based magnetic ionic liquids: evidences of compaction. Chem Sci 2024; 15:5507-5515. [PMID: 38638223 PMCID: PMC11023040 DOI: 10.1039/d4sc00004h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Ionic liquids (ILs) have become an alternative green solvent for storage and for stability of DNA. However, an in-depth understanding of binding and molecular interactions between ILs and DNA is needed. In this respect, magnetic ILs (MILs) are promising due to their tunable physicochemical properties. Various spectroscopic techniques and molecular simulations have been employed to unravel the critical factors of the strength and binding mechanism of MILs with DNA. UV-vis spectra unravel the multimodal binding of MILs with DNA, and the intrusion of IL molecules into the minor groove of DNA has been observed from dye displacement studies. Fluorescence correlation spectroscopic studies and scanning electron microscopy confirm the compaction of the DNA. ITC and molecular docking studies estimate the binding affinity of DNA with MILs, of ∼7 kcal mol-1. The 1 μs long-MD simulations give insight into the structural changes in the DNA in the MIL environment. Due to strong interaction with choline ions in the close vicinity, DNA helixes bend or squeeze in length and dilate in diameter (elliptical → spherical), leading to compaction. The post-MD parameters suggest a stronger interaction with [Ch]2[Mn] IL than with [Ch][Fe] IL; hence, the former induces DNA compaction to a more significant extent. Furthermore, decompaction is observed with the addition of sodium salts and is characterized using spectroscopic methods.
Collapse
Affiliation(s)
- Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO - Bhimpur-Padanpur, Via-Jatni, District - Khurda, PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur Odisha-760010 India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur Odisha-760010 India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO - Bhimpur-Padanpur, Via-Jatni, District - Khurda, PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| |
Collapse
|
3
|
Roy S, Budhathoki S, Iqbal AD, Erickson AN, Ali MA, Alam MA. Domino Reaction Protocol to Synthesize Benzothiophene-Derived Chemical Entities as Potential Therapeutic Agents. J Org Chem 2024; 89:3781-3799. [PMID: 38408196 PMCID: PMC10947603 DOI: 10.1021/acs.joc.3c02646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
An efficient synthesis of 3-amino-2-formyl-functionalized benzothiophenes by a domino reaction protocol and their use to synthesize a library of novel scaffolds have been reported. Reactions of ketones and 1,3-diones with these amino aldehyde derivatives formed a series of benzothieno[3,2-b]pyridine and 3,4-dihydro-2H-benzothiopheno[3,2-b]quinolin-1-one, respectively. A plausible mechanism for the formation of fused pyridine derivatives by the Friedlander reaction has been elucidated by density functional theory (DFT) calculations. Furthermore, hydrazones were obtained by reacting the aldehyde functional group of benzothiophenes with different hydrazine derivatives. Preliminary screening of these compounds against several bacterial strains and cancer cell lines led to the discovery of several hit molecules. Hydrazone and benzothieno[3,2-b]pyridine derivatives are potent cytotoxic and antibacterial agents, respectively. One of the potent compounds effected ∼97% growth inhibition of the LOX IMVI cell line at 10 μM concentration.
Collapse
Affiliation(s)
- Subrata Roy
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University, Jonesboro, Arkansas 70401, United States
- Environmental Sciences Program, Arkansas State University, Jonesboro, Arkansas 72401, United States
| | - Shailesh Budhathoki
- Molecular Biosciences Program, Arkansas State University, Jonesboro, Arkansas 72401, United States
| | - Ahmed D Iqbal
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University, Jonesboro, Arkansas 70401, United States
| | - Alexander N Erickson
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Mohamad Akbar Ali
- Department of Chemistry and Center for Catalysis and Separations, Khalifa University of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Mohammad Abrar Alam
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University, Jonesboro, Arkansas 70401, United States
- Environmental Sciences Program, Arkansas State University, Jonesboro, Arkansas 72401, United States
- Molecular Biosciences Program, Arkansas State University, Jonesboro, Arkansas 72401, United States
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, Arkansas 72401, United States
| |
Collapse
|
4
|
Rajendran S, Sivalingam K, Karnam Jayarampillai RP, Wang WL, Salas CO. Friedlӓnder's synthesis of quinolines as a pivotal step in the development of bioactive heterocyclic derivatives in the current era of medicinal chemistry. Chem Biol Drug Des 2022; 100:1042-1085. [PMID: 35322543 DOI: 10.1111/cbdd.14044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 02/14/2022] [Accepted: 03/20/2022] [Indexed: 01/25/2023]
Abstract
In the current scenario of medicinal chemistry, quinoline plays a pivotal role in the design of new heterocyclic compounds with several pharmacological properties, so the search for new synthetic methodologies and their application in drug discovery has been widely studied. So far, many procedures have been performed for the preparation of quinoline scaffolds, among which Friedländer quinoline synthesis plays an important role in obtaining these heterocycles. The Friedländer reaction involves condensation between 2-aminobenzaldehydes and keto-compounds. The quinoline nucleus, once obtained through the Friedländer synthesis, has been extensively modified so that these derivatives can exhibit a large number of biological activities such as anticancer, antimalarial, antimicrobial, antifungal, antituberculosis, and antileishmanial properties. In this work, the focus is on the applicability of the Friedländer reaction in the synthesis of various types of bioactive heterocyclic quinoline compounds, which to date has not been reported in the context of medicinal chemistry. The main part of this review selectively focuses on research from 2010 to date and will present highlights of the Friedländer quinoline synthesis procedures and findings to address biological and pharmacological activities.
Collapse
Affiliation(s)
- Satheeshkumar Rajendran
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kalaiselvi Sivalingam
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | - Wen-Long Wang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Cristian O Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Chudasama SJ, Shah BJ, Patel KM, Dhameliya TM. The spotlight review on ionic liquids catalyzed synthesis of aza- and oxa-heterocycles reported in 2021. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Yamuna E, Prabakaran K, Zeller M, Rajendra Prasad KJ. Efficient Synthesis of benzo[
h
]carbazol[3,2‐
b
][1,6]naphthyridines. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ezhumalai Yamuna
- Department of Chemistry Karpagam Academy of Higher Education Eachanari Coimbatore India
| | - Kumaresan Prabakaran
- Department of Chemistry PSG College of Arts and Science, Peelamedu Coimbatore India
| | - Matthias Zeller
- Department of Chemistry Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907‐2084 Youngstown Ohio USA
| | | |
Collapse
|
7
|
Yang M, Jian Y, Zhang W, Sun H, Zhang G, Wang Y, Gao Z. Synthesis of quinolines via sequential addition and I 2-mediated desulfurative cyclization. RSC Adv 2021; 11:38889-38893. [PMID: 35493239 PMCID: PMC9044151 DOI: 10.1039/d1ra06976d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/28/2021] [Indexed: 11/21/2022] Open
Abstract
An efficient one-pot approach for the synthesis of quinolines from o-aminothiophenol and 1,3-ynone under mild conditions is disclosed. With the aid of ESI-MS analysis and parallel experiments, a three-step mechanism is proposed-a two-step Michael addition-cyclization condensation step leading to intermediate 1,5-benzothiazepine catalyzed by zirconocene amino acid complex Cp2Zr(η1-C9H10NO2)2, followed by I2-mediated desulfurative step.
Collapse
Affiliation(s)
- Mingming Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Yajun Jian
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Guofang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Yanyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
- A School of Chemistry & Chemical Engineering, Xinjiang Normal University Urumqi 830054 P. R. China
| |
Collapse
|