1
|
Bhattacharya A, Samanta D, Shaw M, Shaik MAS, Basu R, Mondal I, Pathak A. Sensitive Detection of Hg 2+ and l-Cysteine through Optical Asymmetry-Tuned Fluorescence Switch Off-On Behavior in N-Doped Chiral Carbon Dot. ACS APPLIED BIO MATERIALS 2024. [PMID: 39666901 DOI: 10.1021/acsabm.4c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Blue-emissive nitrogen-doped chiral carbon dots (d-NCD230 and l-NCD230) exhibiting antipodal chiroptical activity, synthesized from the thermal pyrolysis of citric acid and d/l-aspartic acid in 1:2 molar ratios, have been explored as chirality-based fluorescent turn-off/on probes for the detection of Hg2+ and l-cysteine (l-Cys). Circular dichroism (CD) spectroscopy revealed that the chiroptical activity originates from a synergy among intrinsic chirality, chiral precursors on the NCD surface, and hybridization of lower energy levels within the embedded chiral chromophore. Quantitative analysis of optical asymmetry using the Kuhn asymmetry factor (g) at the CD signal of 312 nm showed a higher value for d-NCD230 (1.03 × 10-4) compared to l-NCD230 (1.13 × 10-5). Moreover, we have demonstrated chirality transfer and chiral inversion phenomena in d/l-NCDs by preparing carbon dots with different precursor ratios at different temperatures and probing them through CD spectroscopy. The NCDs exhibited selective fluorescence quenching in the presence of Hg2+, demonstrating linearity in the Stern-Volmer plot. Limits of detection (LODs) for Hg2+ were calculated to be 129 and 192 nM for d-NCD230 and l-NCD230, respectively, in the 0-150 μM concentration range. The quenching mechanism involves nonradiative electron transfer due to Hg2+ binding to oxygen-rich functional groups on the d/l-NCD230 surface. The slight variation in LOD values between d-NCD230 and l-NCD230 indicates the negligible effect of the chirality on Hg2+ sensing. Notably, the fluorescence intensity of d/l-NCD230 could be restored upon adding l-cysteine, with d-NCD230 showing a more pronounced enhancement than l-NCD230. This differential response is attributed to a preferential stereoselective interaction arising from the homochirality of d-NCD230/Hg2+ and l-cysteine. These findings demonstrate the potential of chiral nitrogen-doped carbon dots as sensitive and selective probes for Hg2+ and l-cysteine, with implications for environmental monitoring and biological sensing applications.
Collapse
Affiliation(s)
- Angana Bhattacharya
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Dipanjan Samanta
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Manisha Shaw
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Md Abdus Salam Shaik
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Rajarshi Basu
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Imran Mondal
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Amita Pathak
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| |
Collapse
|
2
|
Das P, Ganguly S, Marvi PK, Sherazee M, Tang X(S, Srinivasan S, Rajabzadeh AR. Carbon Dots Infused 3D Printed Cephalopod Mimetic Bactericidal and Antioxidant Hydrogel for Uniaxial Mechano-Fluorescent Tactile Sensor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409819. [PMID: 39394767 PMCID: PMC11602684 DOI: 10.1002/adma.202409819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/14/2024] [Indexed: 10/14/2024]
Abstract
Cephalopods use stretchy skin and dynamic color-tuning organs for visual communication and camouflage. Inspired by these natural mechanisms, a fluorescent biomaterial for deformation-induced illumination and optical communication is proposed. This is the first report of 3D printed soft biomaterials infused with carbon dots hydrothermally derived from chitosan and benzalkonium chloride. These biomaterials exhibit a comprehensive array of properties, including significant uniaxial stretching, near-instantaneous response to tactile stimuli and pH, UV resistance, antibacterial, antioxidant, noncytotoxicity, and highlighting their potential as mechano-optical materials for biomedical applications. The hydrogel's durability is evaluated by cyclic stretching, folding, rolling, and twisting tests to ensure its integrity and good signal-to-noise ratio. The diffusion mechanism is determined by water imbibition kinetics, network parameters, and time-dependent breathing. Overcoming the common limitations of short lifespans and complex manufacturing processes in existing soft hybrids, this work demonstrates a straightforward method to produce durable, energy-independent, mechano-optical hydrogel. Combined with investigations, molecular dynamic modeling is used to understand the interactions of hydrogel components.
Collapse
Affiliation(s)
- Poushali Das
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| | - Sayan Ganguly
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Parham Khoshbakht Marvi
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| | - Masoomeh Sherazee
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| | - Xiaowu (Shirley) Tang
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Seshasai Srinivasan
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
- W Booth School of Engineering Practice and TechnologyMcMaster University1280 Main Street WestHamiltonONL8S 4L7Canada
| | - Amin Reza Rajabzadeh
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
- W Booth School of Engineering Practice and TechnologyMcMaster University1280 Main Street WestHamiltonONL8S 4L7Canada
| |
Collapse
|
3
|
Jiang M, Wang Y, Li J, Gao X. Review of carbon dot-hydrogel composite material as a future water-environmental regulator. Int J Biol Macromol 2024; 269:131850. [PMID: 38670201 DOI: 10.1016/j.ijbiomac.2024.131850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/23/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
As water pollution and scarcity pose severe threats to the sustainable progress of human society, it is important to develop a method or materials that can accurately and efficiently detect pollutants and purify aquatic environments or exploit marine resources. The compositing of photoluminescent and hydrophilic carbon dots (CDs) with hydrogels bearing three-dimensional networks to form CD-hydrogel composites to protect aquatic environments is a "win-win" strategy. Herein, the feasibility of the aforementioned method has been demonstrated. This paper reviews the recent progress of CD-hydrogel materials used in aquatic environments. First, the synthesis methods for these composites are discussed, and then, the composites are categorized according to different methods of combining the raw materials. Thereafter, the progress in research on CD-hydrogel materials in the field of water quality detection and purification is reviewed in terms of the application of the mechanisms. Finally, the current challenges and prospects of CD-hydrogel materials are described. These results are expected to provide insights into the development of CD-hydrogel composites for researchers in this field.
Collapse
Affiliation(s)
- Minghao Jiang
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Yong Wang
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jichuan Li
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Xing Gao
- College of Sports and Human Sciences, Post-doctoral Mobile Research Station, Graduate School, Harbin Sport University, Harbin 150008, PR China.
| |
Collapse
|
4
|
Wei X, Wang X, Fu Y, Zhang X, Yan F. Emerging trends in CDs@hydrogels composites: from materials to applications. Mikrochim Acta 2024; 191:355. [PMID: 38809308 DOI: 10.1007/s00604-024-06411-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Carbon dots (CDs) are nanoscale carbon materials with unique optical properties and biocompatibility. Their applications are limited by their tendency to aggregate or oxidize in aqueous environments. Turning weakness to strengths, CDs can be incorporated with hydrogels, which are three-dimensional networks of crosslinked polymers that can retain large amounts of water. Hydrogels can provide a stable and tunable matrix for CDs, enhancing their fluorescence, stability, and functionality. CDs@hydrogels, known for their ease of synthesis, strong binding capabilities, and rich surface functional groups, have emerged as promising composite materials. In this review, recent advances in the synthesis and characterization of CDs@hydrogels, composite materials composed of CDs and various types of natural or synthetic hydrogels, are summarized. The potential applications of CDs@hydrogels in fluorescence sensing, adsorption, drug delivery, antibacterial activity, flexible electronics, and energy storage are also highlighted. The current challenges and future prospects of CDs@hydrogels systems for the novel functional materials are discussed.
Collapse
Affiliation(s)
- Xin Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, People's Republic of China
- School of Textiles Science and Engineering, Tiangong University, Tianjin, 300387, China
- Hebei Industrial Technology Research Institute of Membranes, Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| | - Xueyu Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, People's Republic of China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
| | - Yang Fu
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xiangyu Zhang
- The First Affiliated Hospital of Tianjin, University of Traditional Chinese Medicine, National Clinical Research Center for Traditional Chinese Medicine, Tianjin, 300381, China
| | - Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, People's Republic of China.
- School of Pharmaceutical Sciences, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
5
|
Xue J, Yao Y, Wang M, Wang Z, Xue Y, Li B, Ma Y, Shen Y, Wu H. Recent studies on proteins and polysaccharides-based pH-responsive fluorescent materials. Int J Biol Macromol 2024; 260:129534. [PMID: 38237824 DOI: 10.1016/j.ijbiomac.2024.129534] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/30/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Polymer-based pH-responsive fluorescent materials have the characteristics of fast response, real-time monitoring, visualisation, and easy forming. Consequently, they have attracted widespread attention in wound healing, sweat monitoring, security and anti-counterfeiting, freshness detection of aquatic products, metal-ion sensing and bioimaging. This paper analyses the preparation principles and characteristics of pH-responsive fluorescent materials based on cellulose, chitosan and proteins. It then outlines the fluorescence properties, environmental response mechanisms and applications of various luminescent materials. Next, the research indicates that amines, N-heterocyclic rings, carboxyl groups and amino plasmonic groups on the fluorescent molecule structure and polymer skeleton appear to change the degree of ionisation under acid or alkali stimulation, which affects the light absorption ability of chromophore electrons, thus producing fluorescence changes in fluorescent materials under different pH stimuli. On this basis, the challenges and growth encountered in the development of proteins and polysaccharides-based pH-responsive fluorescent materials were prospected to provide theoretical references and technical support for constructing pH-responsive fluorescent materials with high stability, high sensitivity, long-lasting pH-response and wide detection range.
Collapse
Affiliation(s)
- Jiannan Xue
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Yijun Yao
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China.
| | - Miao Wang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Zhigang Wang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Ying Xue
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Bo Li
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Yanli Ma
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Yanqin Shen
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Hailiang Wu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China.
| |
Collapse
|
6
|
Muangmora R, Kemacheevakul P, Chuangchote S. Fiberglass cloth coated by coffee ground waste-derived carbon quantum dots/titanium dioxide composite for removal of caffeine and other pharmaceuticals from water. Heliyon 2023; 9:e17693. [PMID: 37455966 PMCID: PMC10338977 DOI: 10.1016/j.heliyon.2023.e17693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Coffee ground waste from the coffee beverage preparation is mainly discarded and consequently ends up in landfill, which cause the contamination of caffeine in various environmental compartments. This study focuses on the upcycling of coffee-ground waste to carbon quantum dots (CQDs) for use as a modifying material to improve the visible light activity of titanium dioxide (TiO2). The CQD solution was synthesized by hydrothermal method, which has an average size of 2.80 ± 0.63 nm. The CQDs/TiO2 photocatalysts were prepared by combining CQD solutions at various amounts with sol-gel TiO2 and then coated on the fiberglass cloths (FGCs). The photocatalytic application mainly focuses on the removal of caffeine from the water. The photocatalytic experiment was preliminary run in a simple batch reactor under visible light. The 5CQDs/TiO2 coated FGC (5 mL of CQD solution/g of Ti-based on sol-gel) showed the best performance, and it was selected for the removal of caffeine and other pharmaceuticals (i.e., carbamazepine and ibuprofen) in the recirculating reactor. The removals of caffeine, carbamazepine, and ibuprofen after irradiation for 9 h were 82%, 88%, and 84%, respectively. The residual concentrations were significantly lower than the reported toxicity levels based on specific species. The changes in total organic carbon were observed, indicating the mineralization of pharmaceuticals in water. The 5CQDs/TiO2 coated FGC showed good flexible performance. No obvious loss of activity was observed for five runs. The actual wastewater from the coffee pot cleaning process was also tested. The removal was 80% for caffeine and 86% for color in the unit of the American Dye Manufacturers Institute (ADMI).
Collapse
Affiliation(s)
- Rattana Muangmora
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut′s University of Technology Thonburi, 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand
| | - Patiya Kemacheevakul
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut′s University of Technology Thonburi, 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand
- Research Center of Advanced Materials for Energy and Environmental Technology (MEET), King Mongkut′s University of Technology Thonburi, 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | - Surawut Chuangchote
- Research Center of Advanced Materials for Energy and Environmental Technology (MEET), King Mongkut′s University of Technology Thonburi, 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand
- Department of Tool and Materials Engineering, Faculty of Engineering, King Mongkut′s University of Technology Thonburi, 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand
| |
Collapse
|
7
|
Li Q, Zhou Y. Recent advances in fluorescent materials for mercury(ii) ion detection. RSC Adv 2023; 13:19429-19446. [PMID: 37383685 PMCID: PMC10294291 DOI: 10.1039/d3ra02410e] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Invading mercury would cause many serious health hazards such as kidney damage, genetic freak, and nerve injury to human body. Thus, developing highly efficient and convenient mercury detection methods is of great significance for environmental governance and protection of public health. Motivated by this problem, various testing technologies for detecting trace mercury in the environment, food, medicines or daily chemicals have been developed. Among them, the fluorescence sensing technology is a sensitive and efficient detection method for detecting Hg2+ ions due to its simple operation, rapid response and economic value. This review aims to discuss the recent advances in fluorescent materials for Hg2+ ion detection. We reviewed the Hg2+ sensing materials and divided them into seven categories according to the sensing mechanism: static quenching, photoinduced electron transfer, intramolecular charge transfer, aggregation-induced emission, metallophilic interaction, mercury-induced reactions and ligand-to-metal energy transfer. The challenges and prospects of fluorescent Hg2+ ion probes are briefly presented. We hope that this review can provide some new insights and guidance for the design and development of novel fluorescent Hg2+ ion probes to promote their applications.
Collapse
Affiliation(s)
- Qiuping Li
- Key Laboratory of Chronic Diseases, School of Pharmacy, Fuzhou Medical College of Nanchang University Fuzhou 344000 China
| | - You Zhou
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| |
Collapse
|
8
|
Rostami M, Zhang B, Zhang Y. Selective detection of nitenpyram by silica-supported carbon quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122387. [PMID: 36731305 DOI: 10.1016/j.saa.2023.122387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/06/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
In this study, a fluorescent sensor of nitrogen-doped carbon quantum dots (N-CQDs) and silica gel hybrid was developed for the quantitative detection of nitenpyram, a toxic neonicotinoid existing in groundwater and/or surface water.The prepared N-CQDs@SiO2 sensor exhibited remarkable sensing selectivity and sensitivity towards nitenpyram among the four pesticides and six metal ions. A prominent fluorescence quenching of N-CQDs@SiO2 at 445 nm was observed in the presence of nitenpyram with a linear response range of 0-300.0 mg L-1 and an estimated limit of detection of 1.53 mg L-1. The main cause for selective sensing is that nitenpyram absorbs the excitation light of N-CQDs@SiO2, leading to fluorescence quenching of the sensor through the inner filter effect.
Collapse
Affiliation(s)
- Masoumeh Rostami
- Department of Process Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's A1C 5S7, Canada
| | - Baiyu Zhang
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's A1C 5S7, Canada
| | - Yan Zhang
- Department of Process Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's A1C 5S7, Canada.
| |
Collapse
|
9
|
Alacid Y, Esquembre R, Montilla F, Martínez-Tomé MJ, Mateo CR. Fluorescent Nanocomposite Hydrogels Based on Conjugated Polymer Nanoparticles as Platforms for Alkaline Phosphatase Detection. BIOSENSORS 2023; 13:408. [PMID: 36979620 PMCID: PMC10046353 DOI: 10.3390/bios13030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
This work describes the development and characterization of fluorescent nanocomposite hydrogels, with high swelling and absorption capacity, and prepared using a green protocol. These fluorescent materials are obtained by incorporating, for the first time, polyfluorenes-based nanoparticles with different emission bands-poly[9,9-dioctylfluorenyl-2,7-diyl] (PFO) and poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(1,4-benzo-{2,1,3}-thiadiazole)] (F8BT)-into a three-dimensional polymeric network based on polyacrylamide. To this end, two strategies were explored: incorporation of the nanoparticles during the polymerization process (in situ) and embedment after the hydrogel formation (ex situ). The results show that the combination of PFO nanoparticles introduced by the ex situ method provided materials with good storage stability, homogeneity and reproducibility properties, allowing their preservation in the form of xerogel. The fluorescent nanocomposite hydrogels have been tested as a transportable and user-friendly sensing platform. In particular, the ability of these materials to specifically detect the enzyme alkaline phosphatase (ALP) has been evaluated as a proof-of-concept. The sensor was able to quantify the presence of the enzyme in an aqueous sample with a response time of 10 min and LOD of 21 nM. Given these results, we consider that this device shows great potential for quantifying physiological ALP levels as well as enzyme activity in environmental samples.
Collapse
Affiliation(s)
- Yolanda Alacid
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
- Departamento de Química Física and Instituto Universitario de Materiales de Alicante (IUMA), Universidad de Alicante, 03690 Alicante, Spain
| | - Rocío Esquembre
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
| | - Francisco Montilla
- Departamento de Química Física and Instituto Universitario de Materiales de Alicante (IUMA), Universidad de Alicante, 03690 Alicante, Spain
| | - María José Martínez-Tomé
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
| | - C. Reyes Mateo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
| |
Collapse
|
10
|
Wu WX, Chang CW, Lee WF. (2-Hydroxyl-3-aminopyrenyl) propyl methacrylate-based thermo/metal ion sensitive fluorescent hydrogels. IRANIAN POLYMER JOURNAL 2023. [DOI: 10.1007/s13726-023-01158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Yang B, Yu Y, Liu H, Yang L, Hua Z, Feng Y, Xue L. Natural N-Doped Carbon Quantum Dots Derived from Straw and Adhered onto TiO 2 Nanospheres for Enhancing the Removal of Antibiotics and Resistance Genes. ACS OMEGA 2023; 8:718-725. [PMID: 36643467 PMCID: PMC9835777 DOI: 10.1021/acsomega.2c05979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Antibiotics and antibiotic resistance genes (ARGs) are emerging environmental contaminants. TiO2 photocatalytic degradation has been proved an important removal technique, but its photocatalytic ability needs be improved. In our work, natural N-doped carbon quantum dots (N-SCQDs) were extracted from hydrothermal carbonization waste liquid of straw and were attached onto TiO2 nanospheres for remediating antibiotics [sulfadiazine (SA)] and ARGs (sul1, sul2, and intl1). The maximum SA reduction rates were close to 100%, and the ARG reduction rates were 52.91-83.52%/lg10 (sul1), 32.10-68.23%/lg10 (sul2), and 46.29-76.55%/lg10 (inlt1). The temperature of the straw derivatives would influence their photoelectric properties. N-SCQDs@TiO2 expands the application range of a novel potential high-efficiency degradation catalyst and offers a new way of hydrothermal carbonization waste liquid of agricultural waste.
Collapse
Affiliation(s)
- Bei Yang
- Key
Laboratory of Food Quality and Safety of Jiangsu Province-State Laboratory
Breeding Base, Jiangsu Academy of Agricultural
Sciences, Nanjing210014, China
| | - Yingliang Yu
- Key
Laboratory of Food Quality and Safety of Jiangsu Province-State Laboratory
Breeding Base, Jiangsu Academy of Agricultural
Sciences, Nanjing210014, China
| | - Hao Liu
- Key
Laboratory of Water Control in Taihu Lake Basin, Ministry of Water
Resources, Nanjing Hydraulic Research Institute, Nanjing210029, China
| | - Linzhang Yang
- Key
Laboratory of Food Quality and Safety of Jiangsu Province-State Laboratory
Breeding Base, Jiangsu Academy of Agricultural
Sciences, Nanjing210014, China
| | - Zulin Hua
- Key
Laboratory of Integrated Regulation and Resources Development of Shallow
Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing210098, China
| | - Yanfang Feng
- Key
Laboratory of Food Quality and Safety of Jiangsu Province-State Laboratory
Breeding Base, Jiangsu Academy of Agricultural
Sciences, Nanjing210014, China
| | - Lihong Xue
- Key
Laboratory of Food Quality and Safety of Jiangsu Province-State Laboratory
Breeding Base, Jiangsu Academy of Agricultural
Sciences, Nanjing210014, China
| |
Collapse
|
12
|
Bhamore JR, Patil BS. Carbon dots in hydrogels and their applications. CARBON DOTS IN ANALYTICAL CHEMISTRY 2023:149-160. [DOI: 10.1016/b978-0-323-98350-1.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Das P, Ganguly S, Saravanan A, Margel S, Gedanken A, Srinivasan S, Rajabzadeh AR. Naturally Derived Carbon Dots In Situ Confined Self-Healing and Breathable Hydrogel Monolith for Anomalous Diffusion-Driven Phytomedicine Release. ACS APPLIED BIO MATERIALS 2022; 5:5617-5633. [PMID: 36480591 DOI: 10.1021/acsabm.2c00664] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluorescent nanocarbons are well-proficient nanomaterials because of their optical properties and surface engineering. Herein, Apium graveolens-derived carbon dots (ACDs) have been synthesized by a one-step hydrothermal process without using any surplus vigorous chemicals or ligands. ACDs were captured via an in situ gelation reaction to form a semi-interpenetrating polymer network system showing mechanical robustness, fluorescent behavior, and natural adhesivity. ACDs-reinforced hydrogels were tested against robust uniaxial stress, repeated mechanical stretching, thixotropy, low creep, and fast strain recovery, confirming their elastomeric sustainability. Moreover, the room-temperature self-healing behavior was observed for the ACDs-reinforced hydrogels, with a healing efficacy of more than 45%. Water imbibition through hydrogel surfaces was digitally monitored via "breathing" and "accelerated breathing" behaviors. The phytomedicine release from the hydrogels was tuned by the ACDs' microstructure regulatory activity, resulting in better control of the diffusion rate compared to conventional chemical hydrogels. Finally, the phytomedicine-loaded hydrogels were found to be excellent bactericidal materials eradicating more than 85% of Gram-positive and -negative bacteria. The delayed network rupturing, superstretchability, fluorescent self-healing, controlled release, and antibacterial behavior could make this material an excellent alternative to soft biomaterials and soft robotics.
Collapse
Affiliation(s)
- Poushali Das
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, OntarioL8S 4L8, Canada
| | - Sayan Ganguly
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan5290002, Israel
| | - Arumugam Saravanan
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan5290002, Israel
| | - Shlomo Margel
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan5290002, Israel
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan5290002, Israel
| | - Seshasai Srinivasan
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, OntarioL8S 4L8, Canada.,W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, OntarioL8S 4L7, Canada
| | - Amin Reza Rajabzadeh
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, OntarioL8S 4L8, Canada.,W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, OntarioL8S 4L7, Canada
| |
Collapse
|
14
|
da Silva Fernandes R, Tanaka FC, Junior CRF, Yonezawa UG, de Moura MR, Aouada FA. PAAm/CMC/nanoclay nanocomposite hydrogel: understanding the influence of initiators on the chain-growth mechanisms. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Van Tran V, Wi E, Shin SY, Lee D, Kim YA, Ma BC, Chang M. Microgels based on 0D-3D carbon materials: Synthetic techniques, properties, applications, and challenges. CHEMOSPHERE 2022; 307:135981. [PMID: 35964721 DOI: 10.1016/j.chemosphere.2022.135981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/22/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Microgels are three-dimensional (3D) colloidal hydrogel particles with outstanding features such as biocompatibility, good mechanical properties, tunable sizes from submicrometer to tens of nanometers, and large surface areas. Because of these unique qualities, microgels have been widely used in various applications. Carbon-based materials (CMs) with various dimensions (0-3D) have recently been investigated as promising candidates for the design and fabrication of microgels because of their large surface area, excellent conductivity, unique chemical stability, and low cost. Here, we provide a critical review of the specific characteristics of CMs that are being incorporated into microgels, as well as the state-of-the art applications of CM-microgels in pollutant adsorption and photodegradation, H2 evoluation, CO2 capture, soil conditioners, water retention, drug delivery, cell encapsulation, and tissue engineering. Advanced preparation techniques for CM-microgel systems are also summarized and discussed. Finally, challenges related to the low colloidal stability of CM-microgels and development strategies are examined. This review shows that CM-microgels have the potential to be widely used in various practical applications.
Collapse
Affiliation(s)
- Vinh Van Tran
- Laser and Thermal Engineering Laboratory, Department of Mechanical Engineering, Gachon University, Seongnam, 13120, South Korea
| | - Eunsol Wi
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea
| | - Seo Young Shin
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea
| | - Daeho Lee
- Laser and Thermal Engineering Laboratory, Department of Mechanical Engineering, Gachon University, Seongnam, 13120, South Korea
| | - Yoong Ahm Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea; School of Polymer Science and Engineering, Chonnam National University, Gwangju, 61186, South Korea; Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| | - Byung Chol Ma
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea.
| | - Mincheol Chang
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea; School of Polymer Science and Engineering, Chonnam National University, Gwangju, 61186, South Korea; Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
16
|
Saddik R, Hammoudan I, Tighadouini S, Roby O, Radi S, Al-Zaben MI, Ben Bacha A, Masand VH, Almarhoon ZM. Mesoporous Silica Modified with 2-Phenylimidazo[1,2-a] pyridine-3-carbaldehyde as an Effective Adsorbent for Cu(II) from Aqueous Solutions: A Combined Experimental and Theoretical Study. Molecules 2022; 27:5168. [PMID: 36014408 PMCID: PMC9414865 DOI: 10.3390/molecules27165168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we will present an efficient and selective adsorbent for the removal of Cu(II) ions from aqueous solutions. The silica-based adsorbent is functionalized by 2-phenylimidazo[1,2-a] pyridine-3-carbaldehyde (SiN-imd-py) and the characterization was carried out by applying various techniques including FT-IR, SEM, TGA and elemental analysis. The SiN-imd-py adsorbent shows a good selectivity and high adsorption capacity towards Cu(II) and reached 100 mg/g at pH = 6 and T = 25 °C. This adsorption capacity is important compared to other similar adsorbents which are currently published. The adsorption mechanism, thermodynamics, reusability and the effect of different experimental conditions, such as contact time, pH and temperature, on the adsorption process, were also investigated. In addition, a theoretical study was carried out to understand the adsorption mechanism and the active sites of the adsorbent, as well as the stability of the complex formed and the nature of the bonds.
Collapse
Affiliation(s)
- Rafik Saddik
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University, Casablanca 20000, Morocco
| | - Imad Hammoudan
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University, Casablanca 20000, Morocco
| | - Said Tighadouini
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University, Casablanca 20000, Morocco
| | - Othmane Roby
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University, Casablanca 20000, Morocco
| | - Smaail Radi
- Laboratory of applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohamed Premier University, Oujda 60000, Morocco
| | - Maha I. Al-Zaben
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abir Ben Bacha
- Biochemistry Department, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Science of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Vijay H. Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati 444 602, India
| | - Zainab M. Almarhoon
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Niazy B, Ghasemzadeh H, Vanashi AK, Afraz S. Polyvinyl alcohol/polyacrylamide hydrogel-based sensor for lead (II) ion sensing by resonance Rayleigh scattering. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Nazri NAA, Azeman NH, Bakar MHA, Mobarak NN, Luo Y, Arsad N, Aziz THTA, Zain ARM, Bakar AAA. Localized Surface Plasmon Resonance Decorated with Carbon Quantum Dots and Triangular Ag Nanoparticles for Chlorophyll Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:nano12010035. [PMID: 35009983 PMCID: PMC8746898 DOI: 10.3390/nano12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 05/08/2023]
Abstract
This paper demonstrates carbon quantum dots (CQDs) with triangular silver nanoparticles (AgNPs) as the sensing materials of localized surface plasmon resonance (LSPR) sensors for chlorophyll detection. The CQDs and AgNPs were prepared by a one-step hydrothermal process and a direct chemical reduction process, respectively. FTIR analysis shows that a CQD consists of NH2, OH, and COOH functional groups. The appearance of C=O and NH2 at 399.5 eV and 529.6 eV in XPS analysis indicates that functional groups are available for adsorption sites for chlorophyll interaction. A AgNP-CQD composite was coated on the glass slide surface using (3-aminopropyl) triethoxysilane (APTES) as a coupling agent and acted as the active sensing layer for chlorophyll detection. In LSPR sensing, the linear response detection for AgNP-CQD demonstrates R2 = 0.9581 and a sensitivity of 0.80 nm ppm-1, with a detection limit of 4.71 ppm ranging from 0.2 to 10.0 ppm. Meanwhile, a AgNP shows a linear response of R2 = 0.1541 and a sensitivity of 0.25 nm ppm-1, with the detection limit of 52.76 ppm upon exposure to chlorophyll. Based on these results, the AgNP-CQD composite shows a better linearity response and a higher sensitivity than bare AgNPs when exposed to chlorophyll, highlighting the potential of AgNP-CQD as a sensing material in this study.
Collapse
Affiliation(s)
- Nur Afifah Ahmad Nazri
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.A.A.N.); (M.H.A.B.); (N.A.)
| | - Nur Hidayah Azeman
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.A.A.N.); (M.H.A.B.); (N.A.)
- Correspondence: (N.H.A.); (A.R.M.Z.); (A.A.A.B.)
| | - Mohd Hafiz Abu Bakar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.A.A.N.); (M.H.A.B.); (N.A.)
| | - Nadhratun Naiim Mobarak
- Department of Chemical Sciences, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
| | - Yunhan Luo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, College of Science and Engineering, Jinan University, Guangzhou 510632, China;
| | - Norhana Arsad
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.A.A.N.); (M.H.A.B.); (N.A.)
| | - Tg Hasnan Tg Abd Aziz
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
| | - Ahmad Rifqi Md Zain
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
- Correspondence: (N.H.A.); (A.R.M.Z.); (A.A.A.B.)
| | - Ahmad Ashrif A. Bakar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.A.A.N.); (M.H.A.B.); (N.A.)
- Institut Islam Hadhari, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Correspondence: (N.H.A.); (A.R.M.Z.); (A.A.A.B.)
| |
Collapse
|
19
|
Li R, Li L, Wang B, Yu L. Preparation of Quantum Dot-Embedded Photonic Crystal Hydrogel and Its Application as Fluorescence Sensor for the Detection of Nitrite. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3126. [PMID: 34835890 PMCID: PMC8623233 DOI: 10.3390/nano11113126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/19/2022]
Abstract
The development of fluorescence sensing platforms with excellent photoluminescence capabilities is of great importance for their further application. In this work, a photonic crystal structure was successfully applied to enhance the luminescence performance of fluorescent hydrogel, and the application of the obtained hydrogel as a fluorescence sensor was explored. A polystyrene photonic crystal template was constructed via vertical deposition self-assembly; then, the precursor solution containing polyethylenimine-capped CdS quantum dots (PEI-CdS QDs) and monomers filled in the gap of the template. After the polymerization process, the desired hydrogel was obtained. PEI-CdS QDs endowed the hydrogel with its fluorescence property, while interestingly, the photonic crystal structure showed a significant enhancement effect on the fluorescence-emission capability. The mechanism of this phenomenon was revealed. Moreover, this hydrogel could be used as a reusable fluorescence sensor for the detection of nitrite in water with good selectivity. The limit of detection was determined to be 0.25 μmol/L, which is much lower than the maximum limit for nitrite in drinking water.
Collapse
Affiliation(s)
- Rongzhen Li
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, China;
| | - Lian Li
- Department of Chemistry, School of Science, Tianjin Chengjian University, Tianjin 300384, China; (L.L.); (B.W.)
| | - Bin Wang
- Department of Chemistry, School of Science, Tianjin Chengjian University, Tianjin 300384, China; (L.L.); (B.W.)
| | - Liping Yu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, China;
| |
Collapse
|