1
|
Luxenburger A, Harris LD, Ure EM, Jiao W, Woolhouse AD, Cameron SA, Weymouth-Wilson A, Furneaux RH, Pitman JL, Hinkley SFR. The discovery of 12β-methyl-17-epi-18-nor-bile acids as potent and selective TGR5 agonists. Eur J Med Chem 2023; 250:115143. [PMID: 36841086 DOI: 10.1016/j.ejmech.2023.115143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Recent discoveries have demonstrated that the physiological function of bile acids extends to the regulation of diverse signaling processes through interactions with nuclear and G protein-coupled receptors, most notably the Farnesoid-X nuclear receptor (FXR) and the G protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5). Targeting such signaling pathways pharmacologically, i.e. with bile acid-derived therapeutics, presents great potential for the treatment of various metabolic, inflammatory immune, liver, and neurodegenerative diseases. Here we report the discovery of two potent and selective TGR5 agonists (NZP196 and 917). These compounds are the taurine conjugates of 6α-ethyl-substituted 12β-methyl-18-nor-bile acids with the side chain being located on the α-face of the steroid scaffold. The compounds emerged from a screening effort of a diverse library of 12β-methyl-18-nor-bile acids that were synthesized from 12β-methyl-18-nor-chenodeoxycholic acid and its C17-epimer. Upon testing for FXR activity, both compounds were found to be inactive, thus revealing selectivity for TGR5.
Collapse
Affiliation(s)
- Andreas Luxenburger
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand.
| | - Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | - Elizabeth M Ure
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | - Wanting Jiao
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | - Anthony D Woolhouse
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | - Scott A Cameron
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | | | - Richard H Furneaux
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | - Janet L Pitman
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6012, New Zealand
| | - Simon F R Hinkley
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| |
Collapse
|
2
|
3α,7-Dihydroxy-14(13→12) abeo-5β,12α(H),13β(H)-cholan-24-oic Acids Display Neuroprotective Properties in Common Forms of Parkinson's Disease. Biomolecules 2022; 13:biom13010076. [PMID: 36671460 PMCID: PMC9855844 DOI: 10.3390/biom13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Parkinson's Disease is the most common neurodegenerative movement disorder globally, with prevalence increasing. There is an urgent need for new therapeutics which are disease-modifying rather than symptomatic. Mitochondrial dysfunction is a well-documented mechanism in both sporadic and familial Parkinson's Disease. Furthermore, ursodeoxycholic acid (UDCA) has been identified as a bile acid which leads to increased mitochondrial function in multiple in vitro and in vivo models of Parkinson's Disease. Here, we describe the synthesis of novel C-nor-D-homo bile acid derivatives and the 12-hydroxy-methylated derivative of lagocholic acid (7) and their biological evaluation in fibroblasts from patients with either sporadic or LRRK2 mutant Parkinson's Disease. These compounds boost mitochondrial function to a similar level or above that of UDCA in many assays; notable, however, is their ability to boost mitochondrial function to a higher level and at lower concentrations than UDCA specifically in the fibroblasts from LRRK2 patients. Our study indicates that novel bile acid chemistry could lead to the development of more efficacious bile acids which increase mitochondrial function and ultimately cellular health at lower concentrations proving attractive potential novel therapeutics for Parkinson's Disease.
Collapse
|
3
|
Synthesis of Novel C/D Ring Modified Bile Acids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072364. [PMID: 35408759 PMCID: PMC9000252 DOI: 10.3390/molecules27072364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
Bile acid receptors have been identified as important targets for the development of new therapeutics to treat various metabolic and inflammatory diseases. The synthesis of new bile acid analogues can help elucidate structure–activity relationships and define compounds that activate these receptors selectively. Towards this, access to large quantities of a chenodeoxycholic acid derivative bearing a C-12 methyl and a C-13 to C-14 double bond provided an interesting scaffold to investigate the chemical manipulation of the C/D ring junction in bile acids. The reactivity of this alkene substrate with various zinc carbenoid species showed that those generated using the Furukawa methodology achieved selective α-cyclopropanation, whereas those generated using the Shi methodology reacted in an unexpected manner giving rise to a rearranged skeleton whereby the C ring has undergone contraction to form a novel spiro–furan ring system. Further derivatization of the cyclopropanated steroid included O-7 oxidation and epimerization to afford new bile acid derivatives for biological evaluation.
Collapse
|
4
|
Luxenburger A, Ure EM, Harris L, Cameron SA, Weymouth-Wilson A, Furneaux RH, Pitman J, Hinkley SF. The Synthesis of 12β-Methyl-18-nor-Avicholic Acid Analogues as Potential TGR5 Agonists†. Org Biomol Chem 2022; 20:3511-3527. [DOI: 10.1039/d1ob02401a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the quest for new modulators of the Farnesoid-X (FXR) and Takeda G-protein-coupled (TGR5) receptors, bile acids are a popular candidate for drug development. Recently, bile acids endowed with a...
Collapse
|