1
|
Osiro KO, Duque HM, Sampaio de Oliveira KB, Melo NTM, Lima LF, Paes HC, Franco OL. Cleaving the way for heterologous peptide production: An overview of cleavage strategies. Methods 2024; 234:36-44. [PMID: 39638163 DOI: 10.1016/j.ymeth.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/12/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
One of the main bottlenecks for recombinant peptide production is choosing the proper cleavage method to remove fusion protein tags from target peptides. While these tags are crucial for inhibiting the activity of the target peptide during heterologous expression, incorporating a cleavage site is essential for their later removal, ensuring the pure sequencing of the peptide. This review evaluates different cleavage methods, including protease-mediated, self-cleavable protein, and chemical-mediated sites, regarding their advantages and limitations. For instance, intein, Npro EDDIE, enterokinase, factor Xa, SUMO, and CNBr are options for residue-free cleavage. Although protease-mediated cleavage is widely used, it can be expensive, due to its own cost added to the whole process. As an alternative, self-cleavable sites eliminate the requirement for proteinases. Another crucial step in defining the proper cleavage method is cost consideration, which relates to the purpose of peptide production. Here, we explore a range of cleavage approaches, meeting the needs of both cost-constrained applications and a more flexible budget. Overall, selecting the most suitable cleavage method should be based on careful consideration of toxicity, cost, accuracy, and specific application requirements to ensure a state-of-the-art approach.
Collapse
Affiliation(s)
- Karen Ofuji Osiro
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | | | - Nadielle Tamires Moreira Melo
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil; Colegiado de Clínica Médica da Faculdade de Medicina, Universidade de Brasília (UnB), Brasília 70910-900, Brazil
| | - Letícia Ferreira Lima
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | - Hugo Costa Paes
- Colegiado de Clínica Médica da Faculdade de Medicina, Universidade de Brasília (UnB), Brasília 70910-900, Brazil
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79.117-900, Brazil; Pós-graduação em Patologia Molecular, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil.
| |
Collapse
|
2
|
Xu W, Zhao Z, Su M, Jain A, Lloyd HC, Feng EY, Cox N, Woo CM. Genesis and regulation of C-terminal cyclic imides from protein damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.606997. [PMID: 39211211 PMCID: PMC11360958 DOI: 10.1101/2024.08.09.606997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
C-Terminal cyclic imides are post-translational modifications (PTMs) that can arise from spontaneous intramolecular cleavage of asparagine or glutamine residues resulting in a form of irreversible protein damage. These protein damage events are recognized and removed by the E3 ligase substrate adapter cereblon (CRBN), indicating that these aging-related modifications may require cellular quality control mechanisms to prevent deleterious effects. However, the factors that determine protein or peptide susceptibility to C-terminal cyclic imide formation or their effect on protein stability have not been explored in detail. Here, we characterize the primary and secondary structures of peptides and proteins that promote intrinsic formation of C-terminal cyclic imides in comparison to deamidation, a related form of protein damage. Extrinsic effects from solution properties and stressors on the cellular proteome additionally promote C-terminal cyclic imide formation on proteins like glutathione synthetase (GSS) that are susceptible to aggregation if the protein damage products are not removed by CRBN. This systematic investigation provides insight to the regions of the proteome that are prone to these unexpectedly frequent modifications, the effects of this form of protein damage on protein stability, and the biological role of CRBN.
Collapse
|
3
|
Takayesu A, Mahoney BJ, Goring AK, Jessup T, Ogorzalek Loo RR, Loo JA, Clubb RT. Insight into the autoproteolysis mechanism of the RsgI9 anti-σ factor from Clostridium thermocellum. Proteins 2024; 92:946-958. [PMID: 38597224 PMCID: PMC11222046 DOI: 10.1002/prot.26690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Clostridium thermocellum is a potential microbial platform to convert abundant plant biomass to biofuels and other renewable chemicals. It efficiently degrades lignocellulosic biomass using a surface displayed cellulosome, a megadalton sized multienzyme containing complex. The enzymatic composition and architecture of the cellulosome is controlled by several transmembrane biomass-sensing RsgI-type anti-σ factors. Recent studies suggest that these factors transduce signals from the cell surface via a conserved RsgI extracellular (CRE) domain (also called a periplasmic domain) that undergoes autoproteolysis through an incompletely understood mechanism. Here we report the structure of the autoproteolyzed CRE domain from the C. thermocellum RsgI9 anti-σ factor, revealing that the cleaved fragments forming this domain associate to form a stable α/β/α sandwich fold. Based on AlphaFold2 modeling, molecular dynamics simulations, and tandem mass spectrometry, we propose that a conserved Asn-Pro bond in RsgI9 autoproteolyzes via a succinimide intermediate whose formation is promoted by a conserved hydrogen bond network holding the scissile peptide bond in a strained conformation. As other RsgI anti-σ factors share sequence homology to RsgI9, they likely autoproteolyze through a similar mechanism.
Collapse
Affiliation(s)
- Allen Takayesu
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Brendan J. Mahoney
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute. University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Andrew K. Goring
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Tobie Jessup
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Rachel R Ogorzalek Loo
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute. University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute. University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute. University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Petkowski JJ, Seager MD, Bains W, Seager S. General instability of dipeptides in concentrated sulfuric acid as relevant for the Venus cloud habitability. Sci Rep 2024; 14:17083. [PMID: 39048621 PMCID: PMC11269616 DOI: 10.1038/s41598-024-67342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Recent renewed interest in the possibility of life in the acidic clouds of Venus has led to new studies on organic chemistry in concentrated sulfuric acid. We have previously found that the majority of amino acids are stable in the range of Venus' cloud sulfuric acid concentrations (81% and 98% w/w, the rest being water). The natural next question is whether dipeptides, as precursors to larger peptides and proteins, could be stable in this environment. We investigated the reactivity of the peptide bond using 20 homodipeptides and find that the majority of them undergo solvolysis within a few weeks, at both sulfuric acid concentrations. Notably, a few exceptions exist. HH and GG dipeptides are stable in 98% w/w sulfuric acid for at least 4 months, while II, LL, VV, PP, RR and KK resist hydrolysis in 81% w/w sulfuric acid for at least 5 weeks. Moreover, the breakdown process of the dipeptides studied in 98% w/w concentrated sulfuric acid is different from the standard acid-catalyzed hydrolysis that releases monomeric amino acids. Despite a few exceptions at a single concentration, no homodipeptides have demonstrated stability across both acid concentrations studied. This indicates that any hypothetical life on Venus would likely require a functional substitute for the peptide bond that can maintain stability throughout the range of sulfuric acid concentrations present.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland.
- JJ Scientific, 02-792, Mazowieckie, Warsaw, Poland.
| | - Maxwell D Seager
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
- Nanoplanet Consulting, Concord, MA, 01742, USA
| | - William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- School of Physics and Astronomy, Cardiff University, 4 The Parade, Cardiff, CF24 3AA, UK
- Rufus Scientific, Melbourn, Herts, SG8 6ED, UK
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Nanoplanet Consulting, Concord, MA, 01742, USA
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
5
|
Kato K, Nakayoshi T, Shinohara Y, Kurimoto E, Oda A, Ishikawa Y. Theoretical Studies on the Reaction Mechanism of Schiff Base Formation from Hexoses. J Phys Chem B 2024; 128:4952-4958. [PMID: 38728588 DOI: 10.1021/acs.jpcb.4c01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The Maillard reaction is one of the nonenzymatic post-translational modifications of proteins. Products of this reaction are considered to be related to aging diseases and the sensation of taste. In the initial stage of the Maillard reaction, Schiff base formation first occurs by the nucleophilic attack of amine nitrogen in proteins, and then, the reaction proceeds through the formation of 1,2-eminal and Amadori compounds. In this study, we computationally investigated the reaction pathway of Schiff base formation from hexoses. The optimized geometries of energy minima and transition states were calculated by using the density functional theory with the CAM-B3LYP/6-311+G(2d,2p) level of theory. The Schiff base formation progressed through three steps: two steps of carbinolamine formation and one step of dehydration. The dehydration is considered to be the rate-determining step in all hexoses because the activation barrier of the dehydration was higher than that of the carbinolamine formation. Furthermore, the steric configuration of the OH group at positions 2 and 3 affected the activation barrier.
Collapse
Affiliation(s)
- Koichi Kato
- Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Tomoki Nakayoshi
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozukahigasi, Asaminami-ku, Hiroshima 731-3194, Japan
| | - Yasuro Shinohara
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya 463-8521, Japan
| | - Eiji Kurimoto
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Akifumi Oda
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Yoshinobu Ishikawa
- Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan
| |
Collapse
|
6
|
Li Y, Qi X, Fan C, Fan Y, Zhang H, Zhang J, Hou H. Novel synergistic cross-linking ameliorate ready-to-eat sea cucumber deterioration and its quantum chemical analysis. Food Chem 2024; 439:138097. [PMID: 38061304 DOI: 10.1016/j.foodchem.2023.138097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/12/2023] [Accepted: 11/25/2023] [Indexed: 01/10/2024]
Abstract
Synergistic cross-linkers could improve the taste acceptability of ready-to-eat sea cucumber (RSC). Besides, the hardness of RSC was increased by 331.00% and 266.87% after synergistic cross-linking. Synergistic cross-linking treatment could ameliorate the non-enzymatic degradation of RSC collagen and polysaccharides. Gaussian calculations results showed that dipeptides containing asparagine residues may have different reaction pathways. The main cleavage pathways of CH3CO-Asn-Gly-NHCH3 (NG) might be water-assisted side chain cyclization, stepwise cyclamide hydrolysis via a Gemdiol Intermediate, deamination, and peptide bond breakage. The relative free energy of cyclamide hydrolysis process of NG was increased by 8.2 kcal/mol after synergistic cross-linking. The mass spectrometry results showed that typical peptides could cleavage at NG, CH3CO-Asn-Lys-NHCH3 (NK) and CH3CO-Asn-Leu-NHCH3 (NL) sites after heating, which justified the breakage pattern of peptides in Gaussian calculations. It can offer a comprehensive theoretical basis for the processing of the ready-to-eat sea cucumber with storage stability.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Xin Qi
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Chaozhong Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yan Fan
- College of Marine Life Sciences, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Hongwei Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China; Technology Center of Qingdao Customs District, No. 83, Xinyue Road, Qingdao, Shandong Province 266109, PR China
| | - Jiangjiang Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong Province 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, PR China.
| |
Collapse
|
7
|
Nakayoshi T, Kato K, Kurimoto E, Takano Y, Oda A. Predicting Reaction Mechanisms for the Threonine-Residue Stereoinversion Catalyzed by a Dihydrogen Phosphate Ion. ACS OMEGA 2022; 7:18306-18314. [PMID: 35694452 PMCID: PMC9178615 DOI: 10.1021/acsomega.2c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The stereoinversion of amino acid residues in proteins is considered to trigger various age-related diseases. Serine (Ser) residues are relatively prone to stereoinversion. It is assumed that threonine (Thr) residues also undergo stereoinversion, which results in the formation of the d-allo-Thr residue, by the same mechanisms as those for Ser-residue stereoinversion; however, d-allo-Thr residues have not been detected in vivo. To date, although Ser-residue stereoinversion has been suggested to progress via enolization, plausible reaction mechanisms for Thr-residue stereoinversion have not been proposed. In this study, we investigated the pathway of Thr-residue enolization and successfully identified the three types of plausible reaction pathways of Thr-residue stereoinversion catalyzed by a dihydrogen phosphate ion. The geometries of reactant complexes, transition states, and enolized product complexes were optimized using B3LYP density functional methods, and single-point calculations were performed for all optimized geometries using Møller-Plesset perturbation theory to obtain reliable energies. As a result, the calculated activation energies of Thr-residue stereoinversion were 105-106 kJ mol-1, which were comparable with those of Ser-residue stereoinversion reported previously. The infrequency of Thr-residue stereoinversion may be due to other factors, such as the hydrophobicity and/or the steric hindrance of the γ-methyl group, rather than the high activation energies.
Collapse
Affiliation(s)
- Tomoki Nakayoshi
- Graduate
School of Information Sciences, Hiroshima
City University, 3-4-1 Ozukahigashi, Asaminami-ku, Hiroshima, Hiroshima 731-3194, Japan
- Faculty
of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
- Institute
of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Koichi Kato
- Faculty
of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
- Faculty
of Pharmaceutical Sciences, Shonan University
of Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama, Kanagawa 244-0806, Japan
- College
of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Eiji Kurimoto
- Faculty
of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Yu Takano
- Graduate
School of Information Sciences, Hiroshima
City University, 3-4-1 Ozukahigashi, Asaminami-ku, Hiroshima, Hiroshima 731-3194, Japan
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akifumi Oda
- Faculty
of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
- Institute
of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Zhuo C, Tian H, Zhou C, Sun Y, Chen X, Li R, Chen J, Yang L, Li Q, Zhang Q, Xu Y, Song X. Transcranial direct current stimulation of the occipital lobes with adjunct lithium attenuates the progression of cognitive impairment in patients with first episode schizophrenia. Front Psychiatry 2022; 13:962918. [PMID: 36177219 PMCID: PMC9513041 DOI: 10.3389/fpsyt.2022.962918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/02/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND There is no standard effective treatment for schizophrenia-associated cognitive impairment. Efforts to use non-invasive brain stimulation for this purpose have been focused mostly on the frontal cortex, with little attention being given to the occipital lobe. MATERIALS AND METHODS We compared the effects of nine intervention strategies on cognitive performance in psychometric measures and brain connectivity measured obtained from functional magnetic resonance imaging analyses. The strategies consisted of transcranial direct current stimulation (t-DCS) or repetitive transcranial magnetic stimulation (r-TMS) of the frontal lobe or of the occipital alone or with adjunct lithium, or lithium monotherapy. We measured global functional connectivity density (gFCD) voxel-wise. RESULTS Although all nine patient groups showed significant improvements in global disability scores (GDSs) following the intervention period (vs. before), the greatest improvement in GDS was observed for the group that received occipital lobe-targeted t-DCS with adjunct lithium therapy. tDCS of the occipital lobe improved gFCD throughout the brain, including in the frontal lobes, whereas stimulation of the frontal lobes had less far-reaching benefits on gFCD in the brain. Adverse secondary effects (ASEs) such as heading, dizziness, and nausea, were commonly experienced by patients treated with t-DCS and r-TMS, with or without lithium, whereas ASEs were rare with lithium alone. CONCLUSION The most effective treatment strategy for impacting cognitive impairment and brain communication was t-DCS stimulation of the occipital lobe with adjunct lithium therapy, though patients often experienced headache with dizziness and nausea after treatment sessions.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Real Time Brain Circuit Tracing in Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin Fourth Central Hospital of Tianjin Medical University, Tianjin, China.,Key Laboratory of Multiple Organ Damages of Major Psychoses (MODMP_Lab), Tianjin Fourth Center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, Henan, China.,Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, Henan, China.,t-DCS and r-TMS Center of Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, China.,Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongjun Tian
- Key Laboratory of Multiple Organ Damages of Major Psychoses (MODMP_Lab), Tianjin Fourth Center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin, China
| | - Chunhua Zhou
- Department of Pharmacology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yun Sun
- t-DCS and r-TMS Center of Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Xinying Chen
- t-DCS and r-TMS Center of Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Ranli Li
- t-DCS and r-TMS Center of Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Jiayue Chen
- Key Laboratory of Real Time Brain Circuit Tracing in Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin Fourth Central Hospital of Tianjin Medical University, Tianjin, China
| | - Lei Yang
- Key Laboratory of Real Time Brain Circuit Tracing in Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin Fourth Central Hospital of Tianjin Medical University, Tianjin, China
| | - Qianchen Li
- Key Laboratory of Real Time Brain Circuit Tracing in Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin Fourth Central Hospital of Tianjin Medical University, Tianjin, China
| | - Qiuyu Zhang
- Key Laboratory of Real Time Brain Circuit Tracing in Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin Fourth Central Hospital of Tianjin Medical University, Tianjin, China
| | - Yong Xu
- Department of Psychiatry, The First Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|