1
|
Yang X, Niu Y, Fan Y, Zheng T, Fan J. Green synthesis of Poria cocos polysaccharides-silver nanoparticles and their applications in food packaging. Int J Biol Macromol 2024; 269:131928. [PMID: 38688339 DOI: 10.1016/j.ijbiomac.2024.131928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
To reduce pollution caused by traditional plastic packaging and preparation of silver nanoparticles (AgNPs), this work aims to develop biological macromolecular packaging films with green synthesized AgNPs. In this study, a novel P. cocos polysaccharide (PCP) with a unique monosaccharide composition was extracted from Poria cocos (Schw.) Wolf. Then, this polysaccharide containing 24.68 % rhamnose was used as a stabilizer for the green synthesis of PCP-AgNPs for the first time. PCP-AgNPs exhibited excellent antibacterial activity against P. aeruginosa, E. coli, and S. aureus, with the highest antibacterial activity against E. coli (inhibition zone diameter = 11.14 ± 0.79 mm). Subsequently, PCP-AgNPs/chitosan (CS) film was successfully prepared by incorporating PCP-AgNPs into the CS film solution. Several experiments demonstrated that the addition of this nanomaterial promoted the formation of noncovalent interactions between CS and PCP-AgNPs, resulting in a more regular and denser film. Compared to the CS film and control group, the PCP-AgNPs/CS film significantly maintained the quality indexes of strawberries. Therefore, this composite film successfully extended the shelf life of strawberries. Regarding safety, these packaging films were not cytotoxic toward RAW264.7 cells. In conclusion, the environmentally friendly PCP-AgNPs/CS film has the potential to replace some traditional food packaging materials.
Collapse
Affiliation(s)
- Xiaoqian Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yun Niu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yingrun Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Tingting Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiangping Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
2
|
Shen J, Tong A, Zhong X, Yin C, Ahmad B, Wu Z, Yang Y, Tong C. Near-infrared laser-assisted Ag@Chi-PB nanocompounds for synergistically eradicating multidrug-resistant bacteria and promoting diabetic abscess healing. Biomed Pharmacother 2024; 173:116311. [PMID: 38412718 DOI: 10.1016/j.biopha.2024.116311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024] Open
Abstract
Chronic wound infections, particularly multidrug-resistant microbe-caused infections, have imposed severe challenges in clinical administration. The therapeutic effectiveness of the current strategy using conventional antibiotics is extremely unsatisfactory. The development of novel treatment strategies to inhibit the infections caused by multidrug-resistant bacteria is highly desired. In this work, based on the combination of nanocompounds with the assistance of NIR laser, an antibacterial strategy was designed for MRSA-infected abscesses in diabetic mice. The nanocompounds named Ag@Chi-PB were prepared by using chitosan-coated Prussian blue (PB) as a nanocarrier for silver nanoparticles anchoring. Combined with near-infrared (NIR) laser, the nanocompounds were more efficient at killing Escherichia coli (E. coli) and Methicillin-resistant staphyllococcus aureus (MRSA) in vitro. Notably, MRSA was significantly removed in vivo and promoted diabetic abscess healing by the combined therapy of this nanocompound and NIR laser, owing to the synergistic antibacterial effect of photothermal therapy and release of Ag+. Meanwhile, the nanocompound showed satisfactory biocompatibility and superior biosafety. Collectively, the combination therapy of this nanocompound with the assistance of NIR laser may represent a promising strategy for clinical anti-infection.
Collapse
Affiliation(s)
- Jingyi Shen
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province Changsha 410013, PR China
| | - Aidi Tong
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province Changsha 410013, PR China
| | - Xianghua Zhong
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province Changsha 410013, PR China; College of Biology, South China University of Technology, Guangzhou 10561, PR China
| | - Caiyun Yin
- College of Biology, Hunan University, Changsha 410082, PR China
| | - Bilal Ahmad
- College of Biology, Hunan University, Changsha 410082, PR China
| | - Zhou Wu
- College of Biology, Hunan University, Changsha 410082, PR China
| | - Yuejun Yang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province Changsha 410013, PR China.
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
3
|
Patel M, Kikani T, Saren U, Thakore S. Bactericidal, anti-biofilm, anti-oxidant potency and catalytic property of silver nanoparticles embedded into functionalised chitosan gel. Int J Biol Macromol 2024; 262:129968. [PMID: 38320641 DOI: 10.1016/j.ijbiomac.2024.129968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Chitosan is a versatile biocompatible polysaccharide which has attracted great attention for gel synthesis. Its reducing character is specifically exploited for nanoparticle synthesis via green approach. A silver nanocomposite synthesized using this gel, with a novel gelling agent 2,4,6-trihydroxy benzaldehyde, was found to be a promising candidate for several applications including anti-bacterial, anti-biofilm and anti-oxidant activity as well as catalysis. The nanocomposite was well characterized using various spectroscopic and microscopic techniques such as IR, TGA, XRD, XPS, SEM and TEM. The nanocomposite exhibited high bactericidal activity against both S. aureus and E. coli. Further, it was evaluated for anti-biofilm forming property and its potency as antioxidant agent. The nanocomposite served as a catalyst for degradation of Methyl Orange and Rhodamine B at high concentrations (in the range of mM) with a catalytic efficiency of 98.58 % and 99.56 % within 3 min and 5 min respectively.
Collapse
Affiliation(s)
- Miraj Patel
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Twara Kikani
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Ukil Saren
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Sonal Thakore
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India.
| |
Collapse
|
4
|
Sun N, Jiang X, Meng Q, Jiang H, Yuan Z, Zhang J. Preparation of Nanoparticles Loaded with Quercetin and Effects on Bacterial Biofilm and LPS-Induced Oxidative Stress in Dugesia japonica. Appl Biochem Biotechnol 2024; 196:32-49. [PMID: 37097401 DOI: 10.1007/s12010-023-04543-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
Quercetin is a kind of flavonol compound, which has been widely concerned because of its good pharmacological effects. However, its poor water solubility and poor oral absorption limit its application. To address the above problems, the optimal technological conditions for preparing quercetin-loaded chitosan sodium alginate nanoparticles (Q-CSNPs) were obtained through single-factor experiment method. Q-CSNPs were characterized by particle size analyzer, scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform infrared spectroscopy (FTIR). Biofilm experiment evaluated the antibacterial activity of five different concentrations of Q-CSNPs against Escherichia coli and Staphylococcus aureus. DPPH and hydroxyl radical scavenging experiments determined their antioxidant activity. The effect of Q-CSNPs labeled with FITC on the oxidative stress of planarian was determined. The results showed that quercetin was successfully encapsulated and had good antibacterial and antioxidant capacity in vitro. In vivo experiments of planarians also showed that Q-CSNPs could inhibit the oxidative stress induced by lipopolysaccharide (LPS) and especially alleviate the decrease of CAT activity and the increase of MDA content in planarians induced by LPS. After being supported by future in vivo studies, this preparation will provide research possibilities for the development of quercetin nano-drugs, quercetin dietary supplement, and so on.
Collapse
Affiliation(s)
- Na Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Xin Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Qingqing Meng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Han Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Zuoqing Yuan
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China.
| | - Jianyong Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China.
| |
Collapse
|
5
|
Meechai T, Poonsawat T, Limchoowong N, Laksee S, Chumkaeo P, Tuanudom R, Yatsomboon A, Honghernsthit L, Somsook E, Sricharoen P. One-pot synthesis of iron oxide - Gamma irradiated chitosan modified SBA-15 mesoporous silica for effective methylene blue dye removal. Heliyon 2023; 9:e16178. [PMID: 37223700 PMCID: PMC10200858 DOI: 10.1016/j.heliyon.2023.e16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023] Open
Abstract
The development of adsorption technology and the processing of radiation have both been influenced by chitosan adsorbent (γ-chitosan), a raw material with unique features. The goal of the current work was to improve the synthesis of Fe-SBA-15 utilizing chitosan that has undergone gamma radiation (Fe-γ-CS-SBA-15) in order to investigate the removal of methylene blue dye in a single hydrothermal procedure. High-resolution transmission electron microscopy (HRTEM), High angle annular dark field scanning transmission electron microscopy (HAADF-STEM), small- and wide-angle X-ray powder diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR) and Energydispersive X-ray spectroscopy (EDS) were used to characterize γ-CS-SBA-15 that had been exposed to Fe. By using N2-physisorption (BET, BJH), the structure of Fe-γ-CS-SBA-15 was investigated. The study parameters also included the effect of solution pH, adsorbent dose and contact time on the methylene blue adsorption. The elimination efficiency of the methylene blue dye was compiled using a UV-VIS spectrophotometer. The results of the characterization show that the Fe-γ-CS-SBA-15 has a substantial pore volume of 504 m2 g-1 and a surface area of 0.88 cm3 g-1. Furthermore, the maximum adsorption capacity (Qmax) of the methylene blue is 176.70 mg/g. The γ-CS can make SBA-15 operate better. It proves that the distribution of Fe and chitosan (the C and N components) in SBA-15 channels is uniform.
Collapse
Affiliation(s)
- Titiya Meechai
- Department of Premedical Science, Faculty of Medicine, Bangkokthonburi University, Thawi Watthana, Bangkok 10170, Thailand
| | - Thinnaphat Poonsawat
- NANOCAST Laboratory, Center for Catalysis Science and Technology (CAST), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Nunticha Limchoowong
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Sakchai Laksee
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand
| | - Peerapong Chumkaeo
- Department of Premedical Science, Faculty of Medicine, Bangkokthonburi University, Thawi Watthana, Bangkok 10170, Thailand
| | - Ranida Tuanudom
- Department of Premedical Science, Faculty of Medicine, Bangkokthonburi University, Thawi Watthana, Bangkok 10170, Thailand
| | - Artitaya Yatsomboon
- Department of Premedical Science, Faculty of Medicine, Bangkokthonburi University, Thawi Watthana, Bangkok 10170, Thailand
| | - Lalita Honghernsthit
- Department of Premedical Science, Faculty of Medicine, Bangkokthonburi University, Thawi Watthana, Bangkok 10170, Thailand
| | - Ekasith Somsook
- NANOCAST Laboratory, Center for Catalysis Science and Technology (CAST), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Phitchan Sricharoen
- Department of Premedical Science, Faculty of Medicine, Bangkokthonburi University, Thawi Watthana, Bangkok 10170, Thailand
| |
Collapse
|
6
|
Abkhalimov E, Ershov V, Ershov B. Determination of the Concentration of Silver Atoms in Hydrosol Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3091. [PMID: 36144882 PMCID: PMC9504487 DOI: 10.3390/nano12183091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
In this work, we propose a new method for determining the concentration of silver atoms in hydrosols of nanoparticles (NPs) stabilized with various capping agents. The proposed method is based on the determination of IBT absorption in the UV region (a broad band with a weakly pronounced shoulder at ~250 nm). To determine the extinction coefficient at 250 nm, we synthesized silver nanoparticles with average sizes of 5, 10, and 25 nm, respectively. The prepared nanoparticles were characterized by TEM, HRTEM, electron diffraction, XRD, DLS, and UV-Vis spectroscopy. It has been shown that the absorption characteristics of spherical NPs are not significantly influenced by the hydrosol preparation method and the type of stabilizer used. For particles with a size of 5-25 nm, the molar extinction coefficient of Ag0 atoms was found to be equal to 3500 ± 100 L mol-1 cm-1 at a wavelength of 250 nm. The results of the theoretical calculations of the molar extinction coefficients for spherical nanoparticles are in good agreement with the experimental values. ICP-MS analysis confirmed the applicability of this method in the concentration range of 5 × 10-7-1 × 10-4 mol L-1.
Collapse
Affiliation(s)
- Evgeny Abkhalimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Leninsky pr. 31-4, 119071 Moscow, Russia
| | | | | |
Collapse
|
7
|
Kuznetsov NM, Kovaleva VV, Volkov DA, Zagoskin YD, Vdovichenko AY, Malakhov SN, Bakirov AV, Yastremsky EV, Kamyshinsky RA, Stupnikov AA, Chvalun SN, Grigoriev TE. Porous chitosan particles doped by in situ formed silver nanoparticles: Electrorheological response in silicon oil. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nikita M. Kuznetsov
- Laboratory of Polymer Materials, Nanobiomaterials and Structures Department National Research Center "Kurchatov Institute" Moscow Russia
| | - Victoria V. Kovaleva
- Laboratory of Polymer Materials, Nanobiomaterials and Structures Department National Research Center "Kurchatov Institute" Moscow Russia
| | - Danila A. Volkov
- Laboratory of Polymer Materials, Nanobiomaterials and Structures Department National Research Center "Kurchatov Institute" Moscow Russia
| | - Yuriy D. Zagoskin
- Laboratory of Polymer Materials, Nanobiomaterials and Structures Department National Research Center "Kurchatov Institute" Moscow Russia
| | - Artem Yu. Vdovichenko
- Laboratory of Polymer Materials, Nanobiomaterials and Structures Department National Research Center "Kurchatov Institute" Moscow Russia
- Laboratory of Functional Polymer Structures, Department of Biopolymers Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences Moscow Russia
| | - Sergey N. Malakhov
- Laboratory of Polymer Materials, Nanobiomaterials and Structures Department National Research Center "Kurchatov Institute" Moscow Russia
| | - Artem V. Bakirov
- Laboratory of Polymer Materials, Nanobiomaterials and Structures Department National Research Center "Kurchatov Institute" Moscow Russia
- Laboratory of Functional Polymer Structures, Department of Biopolymers Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences Moscow Russia
| | - Eugeny V. Yastremsky
- Laboratory of Polymer Materials, Nanobiomaterials and Structures Department National Research Center "Kurchatov Institute" Moscow Russia
- Laboratory of Electron Microscopy, Shubnikov Institute of Crystallography Federal Research Center "Crystallography and Photonics", Russian Academy of Sciences Moscow Russia
| | - Roman A. Kamyshinsky
- Laboratory of Polymer Materials, Nanobiomaterials and Structures Department National Research Center "Kurchatov Institute" Moscow Russia
- Laboratory of Electron Microscopy, Shubnikov Institute of Crystallography Federal Research Center "Crystallography and Photonics", Russian Academy of Sciences Moscow Russia
- Institute of Nano‐, Bio‐, Information, Cognitive and Socio‐humanistic Sciences and Technologies Moscow Institute of Physics and Technology Dolgoprudny Moscow Region Russia
| | - Alexei A. Stupnikov
- Laboratory of Polymer Materials, Nanobiomaterials and Structures Department National Research Center "Kurchatov Institute" Moscow Russia
| | - Sergei N. Chvalun
- Laboratory of Polymer Materials, Nanobiomaterials and Structures Department National Research Center "Kurchatov Institute" Moscow Russia
- Laboratory of Functional Polymer Structures, Department of Biopolymers Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences Moscow Russia
| | - Timofei E. Grigoriev
- Laboratory of Polymer Materials, Nanobiomaterials and Structures Department National Research Center "Kurchatov Institute" Moscow Russia
- Institute of Nano‐, Bio‐, Information, Cognitive and Socio‐humanistic Sciences and Technologies Moscow Institute of Physics and Technology Dolgoprudny Moscow Region Russia
| |
Collapse
|