1
|
Žigová K, Marčeková Z, Petrovičová T, Lorková K, Čacho F, Krasňan V, Rebroš M. Intensified functional expression of recombinant Zymomonas mobilis zinc-dependent alcohol dehydrogenase I. J Biotechnol 2024; 395:141-148. [PMID: 39349124 DOI: 10.1016/j.jbiotec.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024]
Abstract
Alcohol dehydrogenase I from Zymomonas mobilis (zmADH1) is a zinc-dependent oxidoreductase that catalyses the oxidation of primary or secondary alcohols to the corresponding aldehydes or ketones using NAD+/NADH as a cofactor. Efforts to express zmADH1 in Escherichia coli in a soluble form have been laden with solubility difficulties. A soluble form of recombinant zmADH1 was achieved by the addition of 1 mM zinc into media. Zinc addition facilitates the proper folding of recombinant zmADH1 and significantly reduces the formation of inclusion bodies. The yield of recombinant zmADH1 represents approximately 30 mg/1 L Luria-Bertani media. Intensified production in fermenters showed a striking difference between the specific and total activities of zmADH1 produced at different zinc concentrations. The zmADH1 showed an affinity to medium-chain alcohols, especially 1-pentanol, which could be used in new greener routes for preparation of aldehydes and alcohols.
Collapse
Affiliation(s)
- Klaudia Žigová
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Zuzana Marčeková
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Tatiana Petrovičová
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Katarína Lorková
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - František Čacho
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Vladimír Krasňan
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Martin Rebroš
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia.
| |
Collapse
|
2
|
Farooq T, Javaid S, Ashraf W, Rasool MF, Anjum SMM, Sabir A, Ahmad T, Alqarni SA, Alqahtani F, Imran I. Neuroprotective Effect of Brivaracetam and Perampanel Combination on Electrographic Seizures and Behavior Anomalies in Pentylenetetrazole-Kindled Mice. ACS OMEGA 2024; 9:26004-26019. [PMID: 38911714 PMCID: PMC11191135 DOI: 10.1021/acsomega.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024]
Abstract
Pentylenetetrazole (PTZ)-induced kindling is a broadly used experimental model to study the anticonvulsive potential of new and existing chemical moieties with the aim of discovering drugs hindering seizure progression and associated neurological comorbidities. In the present study, the impact of brivaracetam (BRV) (10 and 20 mg/kg) as monotherapy as well as in combination with 0.25 mg/kg of perampanel (PRP) was investigated on seizure progression with simultaneous electroencephalographic changes in PTZ kindling mouse model. Subsequently, mice were experimentally analyzed for anxiety, cognition, and depression after which their brains were biochemically evaluated for oxidative stress. The outcomes demonstrated that BRV alone delayed the kindling process, but BRV + PRP combination significantly (p < 0.0001) protected the mice from seizures of higher severity and demonstrated an antikindling effect. The PTZ-kindled mice exhibited anxiety, memory impairment, and depression in behavioral tests, which were remarkably less (p < 0.001) in animals treated with drug combination (in a dose-dependent manner) as these mice explored central, illuminated, and exposed zones of open-field test, light/dark box, and elevated plus maze. Moreover, memory impairment was demonstrated by kindled mice, which was significantly (p < 0.001) protected by BRV + PRP as animal's spontaneous alteration, object discrimination, and step-through latencies were increased in various tests employed for the assessment of cognitive abilities. The brains of PTZ-kindled mice had increased malondialdehyde and reduced antioxidant enzymes while treatment with BRV + PRP combination prevented kindling-induced elevation in oxidative markers. The outcomes of this study demonstrate that combining the PRP at low dose augmented the antiseizure properties of BRV as both drugs when administered simultaneously hindered the process of kindling by reducing PTZ-induced excessive electrical activity and oxidative stress in the brain.
Collapse
Affiliation(s)
- Talha Farooq
- Department
of Pharmacology, Faculty of Pharmacy, Bahauddin
Zakariya University, Multan 60800, Pakistan
| | - Sana Javaid
- Department
of Pharmacology, Faculty of Pharmacy, Bahauddin
Zakariya University, Multan 60800, Pakistan
- Department
of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Waseem Ashraf
- Department
of Pharmacology, Faculty of Pharmacy, Bahauddin
Zakariya University, Multan 60800, Pakistan
| | - Muhammad Fawad Rasool
- Department
of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Syed Muhammad Muneeb Anjum
- The
Institute of Pharmaceutical Sciences, University
of Veterinary & Animal Sciences, Lahore 75270, Pakistan
| | - Azka Sabir
- Department
of Pharmacology, Faculty of Pharmacy, Bahauddin
Zakariya University, Multan 60800, Pakistan
| | - Tanveer Ahmad
- Institut
pour l’Avancée des Biosciences, Centre de Recherche
UGA/INSERM U1209/CNRS 5309, Université
Grenoble Alpes, Saint-Martin-d’Heres 38400, France
| | - Saleh A. Alqarni
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department
of Pharmacology, Faculty of Pharmacy, Bahauddin
Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
3
|
Sánchez JD, Gómez-Carpintero J, González JF, Menéndez JC. Twenty-first century antiepileptic drugs. An overview of their targets and synthetic approaches. Eur J Med Chem 2024; 272:116476. [PMID: 38759456 DOI: 10.1016/j.ejmech.2024.116476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
The therapeutic use of the traditional drugs against epilepsy has been hindered by their toxicity and low selectivity. These limitations have stimulated the design and development of new generations of antiepileptic drugs. This review explores the molecular targets and synthesis of the antiepileptic drugs that have entered the market in the 21st century, with a focus on manufacturer synthesis.
Collapse
Affiliation(s)
- J Domingo Sánchez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Jorge Gómez-Carpintero
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Juan F González
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
4
|
Franco M, Silva RC, Rosa GHS, Flores LM, de Oliveira KT, de Assis FF. Synthesis of the Brivaracetam Employing Asymmetric Photocatalysis and Continuous Flow Conditions. ACS OMEGA 2023; 8:23008-23016. [PMID: 37396260 PMCID: PMC10308561 DOI: 10.1021/acsomega.3c02134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023]
Abstract
An original total synthesis of the antiepileptic drug brivaracetam (BRV) is reported. The key step in the synthesis consists of an enantioselective photochemical Giese addition, promoted by visible-light and the chiral bifunctional photocatalyst Δ-RhS. Continuous flow conditions were employed to improve the efficiency and allow an easy scale-up of the enantioselective photochemical reaction step. The intermediate obtained from the photochemical step was converted into BRV by two different pathways, followed by one alkylation and amidation, thus giving the desired active pharmaceutical ingredients (API) in 44% overall yield, 9:1 diastereoisomeric ratio (dr) and >99:1 enantiomeric ratio (er).
Collapse
Affiliation(s)
- Marcelo
S. Franco
- Department
of Chemistry, Universidade Federal de Santa
Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Rodrigo C. Silva
- Department
of Chemistry, Universidade Federal de São
Carlos, Rodovia Washington Luis km 235, São
Carlos, São Paulo 13565-905, Brazil
| | - Gabriel H. S. Rosa
- Department
of Chemistry, Universidade Federal de São
Carlos, Rodovia Washington Luis km 235, São
Carlos, São Paulo 13565-905, Brazil
| | - Lara M. Flores
- Department
of Chemistry, Universidade Federal de Santa
Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Kleber T. de Oliveira
- Department
of Chemistry, Universidade Federal de São
Carlos, Rodovia Washington Luis km 235, São
Carlos, São Paulo 13565-905, Brazil
| | - Francisco F. de Assis
- Department
of Chemistry, Universidade Federal de Santa
Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| |
Collapse
|
5
|
Zhou Y, Guo S, Huang Q, Lang Q, Chen GQ, Zhang X. Facile access to chiral γ-butyrolactones via rhodium-catalysed asymmetric hydrogenation of γ-butenolides and γ-hydroxybutenolides. Chem Sci 2023; 14:4888-4892. [PMID: 37181773 PMCID: PMC10171041 DOI: 10.1039/d3sc00491k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 05/16/2023] Open
Abstract
The highly efficient Rh/ZhaoPhos-catalysed asymmetric hydrogenation of γ-butenolides and γ-hydroxybutenolides was successfully developed. This protocol provides an efficient and practical approach to the synthesis of various chiral γ-butyrolactones, which are synthetically valuable building blocks of diverse natural products and therapeutic substances, with excellent results (up to >99% conversion and 99% ee). Further follow-up transformations have been revealed to accomplish creative and efficient synthetic routes for several enantiomerically enriched drugs via this catalytic methodology.
Collapse
Affiliation(s)
- Yuxuan Zhou
- Shenzhen Grubbs Institute, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology Shenzhen 518000 People's Republic of China
| | - Siyuan Guo
- Shenzhen Grubbs Institute, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology Shenzhen 518000 People's Republic of China
| | - Qiyuan Huang
- Shenzhen Grubbs Institute, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology Shenzhen 518000 People's Republic of China
| | - Qiwei Lang
- Shenzhen Grubbs Institute, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology Shenzhen 518000 People's Republic of China
| | - Gen-Qiang Chen
- Shenzhen Grubbs Institute, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology Shenzhen 518000 People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology Shenzhen 518000 People's Republic of China
| | - Xumu Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology Shenzhen 518000 People's Republic of China
| |
Collapse
|
6
|
Engineering of an ene-reductase for producing the key intermediate of antiepileptic drug Brivaracetam. Appl Microbiol Biotechnol 2023; 107:1649-1661. [PMID: 36710288 DOI: 10.1007/s00253-023-12389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/31/2023]
Abstract
(R)-4-Propyldihydrofuran-2(3H)-one (R-PDFO) is the key chiral intermediate for the antiepileptic drug Brivaracetam. Lacking a simple and economical method to approaching R-PDFO, the production of R-PDFO also remains environmentally unfriendly. Here, we developed a straightforward bioreduction way from easily synthesized 4-propylfuran-2(5H)-one (PFO) using ene-reductases. After screened with 27 ene-reductases, E116 stood out with 25.7% yield and 97% ee (R) as the starting enzyme. To improve the catalytic efficiency of E116, several rounds of directed evolution were first carried out. Through rational design, alanine scanning and random mutagenesis, engineered ene-reductase E116-M3 was obtained, with a 2.63-fold improvement in yields over WT, a 12.6-fold improvement in kcat/Km over WT, and stereoselectivity increased to 99% (R). To further improve the yield of R-PDFO, the reaction conditions were then optimized. The catalytic activity of the optimized reaction system was increased again by 2.3 times and the turnover number (TON) of E116-M3 reached 705. Subsequently, whole cells harboring E116-M3 were also shown to have similar capabilities of synthesizing R-PDFO. Finally, E116-M3 was employed in the 50-mL-scale synthesis of R-PDFO under 20 mM of PFO loading to achieve 81% isolated yield and 99% ee. In conclusion, this new approach of engineered ene-reductase catalyzing the asymmetric reduction of PFO could be a green alternative for the efficient synthesis of R-PDFO. KEY POINTS: • An ene-reductase library was first used to screen the bioreduction of PFO. • Rational design contributed to the enhanced R-stereoselectivity of PFO reduction. • E116-M3 was obtained with high activity and stereoselectivity for R-PDFO.
Collapse
|
7
|
Peters BBC, Birke N, Andersson PG, Massaro L. Enantioselective Synthesis of α-Chiral Amides by Catalytic Hydrogenation with Iridium N,P-Complexes. Synlett 2022. [DOI: 10.1055/s-0042-1751399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractThe catalytic asymmetric hydrogenation of olefins constitutes a powerful method for the preparation of chiral compounds. A series of prochiral unsaturated amides were efficiently reduced with high enantioselectivities by means of an iridium N,P-complex-catalyzed hydrogenation. Its application in the synthesis of fenpropidin and the possibility of using isomeric mixtures of starting materials are attractive features of the method.
Collapse
Affiliation(s)
| | - Norman Birke
- Department of Organic Chemistry, Stockholm University
| | - Pher G. Andersson
- Department of Organic Chemistry, Stockholm University
- School of Chemistry and Physics, University of Kwazulu-Natal
| | - Luca Massaro
- Department of Organic Chemistry, Stockholm University
| |
Collapse
|
8
|
Feng J, Xue Y, Wang J, Xie X, Lu C, Chen H, Lu Y, Zhu L, Chu D, Chen X. Enhancing the asymmetric reduction activity of ene-reductases for the synthesis of a brivaracetam precursor. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
ALSaeedy M, Hasan A, Al-Adhreai A, Alrabie A, Qaba H, Mashrah A, Öncü-Kaya EM. An overview of liquid chromatographic methods for analyzing new generation anti-epileptic drugs. J LIQ CHROMATOGR R T 2022. [DOI: 10.1080/10826076.2022.2134146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mohammed ALSaeedy
- Department of Chemistry, Faculty of Applied Sciences, Dhamar University, Dhamar, Yemen
- Department of Chemistry, Faculty of Sciences, Eskisehir Technical University, Eskisehir, Turkey
- Department of Chemistry, Faculty of Education-Albaydha, Albaydha University, Albaydha, Yemen
| | - Ahmed Hasan
- Department of Pharmacology, Graduation School of Health Science, Anadolu University, Eskisehir, Turkey
| | - Arwa Al-Adhreai
- Department of Chemistry, Faculty of Applied Sciences, Dhamar University, Dhamar, Yemen
- Department of Chemistry, Maulana Azad of Arts, Science and Commerce, Aurangabad, India
| | - Ali Alrabie
- Department of Chemistry, Faculty of Education-Albaydha, Albaydha University, Albaydha, Yemen
- Department of Chemistry, Maulana Azad of Arts, Science and Commerce, Aurangabad, India
| | - Hafsah Qaba
- Department of Analytical Chemistry, Graduation School of Health Sciences, Anadolu University, Eskisehir, Turkey
| | - Abdulrahman Mashrah
- Department of Food Science and Technology, Faculty of Agriculture and Food Sciences, Ibb University, Ibb, Yemen
- Department of Food Engineering, Institute of Natural Sciences-Sakarya, Sakarya University, Sakarya, Turkey
| | - Elif Mine Öncü-Kaya
- Department of Chemistry, Faculty of Sciences, Eskisehir Technical University, Eskisehir, Turkey
| |
Collapse
|
10
|
Hartley WC, Schiel F, Ermini E, Melchiorre P. Lewis Base‐Catalysed Enantioselective Radical Conjugate Addition for the Synthesis of Enantioenriched Pyrrolidinones. Angew Chem Int Ed Engl 2022; 61:e202204735. [DOI: 10.1002/anie.202204735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Will C. Hartley
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | | | - Elena Ermini
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Paolo Melchiorre
- ICREA— Passeig Lluís Companys 23 08010 Barcelona Spain
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| |
Collapse
|
11
|
Kumar Singh S, Suresh M, Bahadur Singh R, Bandichhor R, Ghosh P. A solvent free tandem lactamization-decarboxylation route to (S)-Pregabalin lactam. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Hartley WC, Schiel F, Ermini E, Melchiorre P. Lewis Base‐Catalysed Enantioselective Radical Conjugate Addition for the Synthesis of Enantioenriched Pyrrolidinones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Will C. Hartley
- ICIQ: Institut Catala d'Investigacio Quimica Iciq 43007 Tarragona SPAIN
| | - Florian Schiel
- ICIQ: Institut Catala d'Investigacio Quimica Iciq 43007 Tarragona SPAIN
| | - Elena Ermini
- ICIQ: Institut Catala d'Investigacio Quimica iciq 43007 Tarragona SPAIN
| | - Paolo Melchiorre
- Institute of Chemical Research of Catalonia (ICIQ) ICIQ Av. Països Catalans 16 43007 Tarragona SPAIN
| |
Collapse
|