1
|
Zhang S, Yang L, Zhang X, Chen Y, Zhang Y, Sun W. In Situ Polymerization Synthesis of Graphdiyne Nanosheets as Electrode Material and Its Application in NMR Spectroelectrochemistry. Polymers (Basel) 2023; 15:2726. [PMID: 37376372 DOI: 10.3390/polym15122726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
In situ NMR spectroelectrochemistry is extremely powerful in studying redox reactions in real time and identifying unstable reaction intermediates. In this paper, in situ polymerization synthesis of ultrathin graphdiyne (GDY) nanosheets was realized on the surface of copper nanoflower/copper foam (nano-Cu/Cuf)-based electrode with hexakisbenzene monomers and pyridine. Palladium (Pd) nanoparticles were further deposited onto the GDY nanosheets by the constant potential method. By using this GDY composite as electrode material, a new NMR-electrochemical cell was designed for in situ NMR spectroelectrochemistry measurement. The three-electrode electrochemical system consists of a Pd/GDY/nano-Cu/Cuf electrode as the working electrode, a platinum wire as the counter electrode, and a silver/silver chloride (Ag/AgCl) wire as a quasi-reference electrode, which can be dipped into a specially constructed sample tube and adapted for convenient operation in any commercial high-field, variable-temperature FT NMR spectrometer. The application of this NMR-electrochemical cell is illustrated by monitoring the progressive oxidation of hydroquinone to benzoquinone by controlled-potential electrolysis in aqueous solution.
Collapse
Affiliation(s)
- Siyue Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Lin Yang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xiaoping Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yuxue Chen
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yutong Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
2
|
Ferreira da Silva P, Santana Ribeiro T, Ferreira Gomes B, Tiago dos Santos Tavares da Silva G, Silva Lobo CM, Carmo M, Ribeiro C, Bernardes Filho R, Roth C, Colnago LA. Miniaturized Carbon Fiber Paper Electrodes for In Situ High Resolution NMR Analyses. Anal Chem 2022; 94:15223-15230. [DOI: 10.1021/acs.analchem.2c02058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pollyana Ferreira da Silva
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, 13566-590São Carlos, SP, Brazil
- Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428Jülich, Germany
| | - Tatiana Santana Ribeiro
- Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428Jülich, Germany
- Department of Natural Science, Mathematics and Education, Federal University of São Carlos, Rodovia Anhanguera, Km 174, SP-330, 13600-970Araras, SP, Brazil
| | - Bruna Ferreira Gomes
- Electrochemical Process Engineering, University of Bayreuth, Universitätsstraße 30, 95447Bayreuth, Germany
| | | | - Carlos Manuel Silva Lobo
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569Stuttgart, Germany
| | - Marcelo Carmo
- Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428Jülich, Germany
| | - Cauê Ribeiro
- Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428Jülich, Germany
- Embrapa Instrumentação, Rua XV de Novembro, 1452, 13561-206São Carlos, SP, Brazil
| | | | - Christina Roth
- Electrochemical Process Engineering, University of Bayreuth, Universitätsstraße 30, 95447Bayreuth, Germany
| | - Luiz Alberto Colnago
- Embrapa Instrumentação, Rua XV de Novembro, 1452, 13561-206São Carlos, SP, Brazil
| |
Collapse
|