1
|
Rajan K, Thiruvengadam D, Umapathy K, Muthamildevi M, Sangamithirai M, Jayabharathi J, Padmavathy M. Greenly Synthesized Conducting Polymer Nanotunnels with Metal-Hydroxide Nanobundles in Single Dais for Unmitigated Water Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24292-24305. [PMID: 39503565 DOI: 10.1021/acs.langmuir.4c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Electrochemical water splitting required efficient electrocatalysts to produce clean hydrogen fuel. Here, we adopted greenway coprecipitation (GC) method to synthesize conducting polymer (CP) nanotunnel network affixed with luminal-abluminal CoNi hydroxides (GC-CoNiCP), namely, GC-Co1Ni2CP, GC-Co1.5Ni1.5CP, and GC-Co2Ni1CP. The active catalyst, GC-Co2Ni1CP/GC, has low oxygen evolution reaction (OER) overpotential (307 mV) and a smaller Tafel slope (47 mV dec-1) than IrO2 (125 mV dec-1). The electrochemical active surface area (EASA) normalized linear sweep voltammetry (LSV) curve exhibited outstanding intrinsic activity of GC-Co2Ni1CP, which required 285 mV to attain 10 mA cm-2. At 1.54 V, the estimated turnover frequency (TOF) of GC-Co2Ni1CP/GC (0.017337 s-1) was found to be 3-fold higher than that of IrO2 (0.0014 s-1). Furthermore, the GC-Co2Ni1CP/NF consumed a very low overpotential (281 mV) with a small Tafel slope of 121 mV dec-1. The ultrastability of GC-Co2Ni1CP for industrial application was confirmed by durability at 10 and 100 mA cm-2 for the OER (GC/NF-8 h, 2.0%/100 h, 2.2%) and overall water splitting (100 h, 3.8%), which implies that GC-Co2Ni1CP had adequate kinetics to address the elevated rates of water oxidation. The effect of pH and addition of tetramethylammonium cation (TMA+) reveal that GC-Co2Ni1CP follows the lattice oxygen mechanism (LOM). The solar-powered water electrolysis at 1.55 V supports the efficacy of GC-Co2Ni1CP in the solar-to-hydrogen conversion. The environmental impact studies and solar-driven water electrolysis proved that GC-CoNiCP has excellent greenness and efficiency, respectively.
Collapse
Affiliation(s)
- Kuppusamy Rajan
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Chidambaram, Tamilnadu 608002, India
| | - Dhanasingh Thiruvengadam
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Chidambaram, Tamilnadu 608002, India
| | - Krishnan Umapathy
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Chidambaram, Tamilnadu 608002, India
| | - Murugan Muthamildevi
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Chidambaram, Tamilnadu 608002, India
| | - Muthukumaran Sangamithirai
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Chidambaram, Tamilnadu 608002, India
| | - Jayaraman Jayabharathi
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Chidambaram, Tamilnadu 608002, India
| | - Manoharan Padmavathy
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Chidambaram, Tamilnadu 608002, India
| |
Collapse
|
2
|
Self-standing Mo-NiO/Ni Electrocatalyst with Nanoporous Structure for Hydrogen Evolution Reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|